參考文獻 |
[1] E. Livak-Dahl, I. Sinn, and M. Burns, ”Microfluidic Chemical Analysis Systems,” Annual Review of Chemical and Biomolecular Engineering, Vol 2, vol. 2, pp. 325-353, 2011.
[2] D. B. Weibel and G. M. Whitesides, ”Applications of microfluidics in chemical biology,” Current Opinion in Chemical Biology, vol. 10, pp. 584-591, Dec 2006.
[3] S. C. Jakeway, A. J. de Mello, and E. L. Russell, ”Miniaturized total analysis systems for biological analysis,” Fresenius Journal of Analytical Chemistry, vol. 366, pp. 525-539, Mar-Apr 2000.
[4] A. Alrifaiy, O. A. Lindahl, and K. Ramser, ”Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering,” Polymers, vol. 4, pp. 1349-1398, Sep 2012.
[5] L. Nan, Z. D. Jiang, and X. Y. Wei, ”Emerging microfluidic devices for cell lysis: a review,” Lab on a Chip, vol. 14, pp. 1060-1073, 2014.
[6] C. Iliescu, ”Microfluidics in glass: Technologies and applications,” Informacije Midem-Journal of Microelectronics Electronic Components and Materials, vol. 36, pp. 204-211, Dec 2006.
[7] C. Iliescu, H. Taylor, M. Avram, J. M. Miao, and S. Franssila, ”A practical guide for the fabrication of microfluidic devices using glass and silicon,” Biomicrofluidics, vol. 6, Mar 2012.
[8] H. Becker and L. E. Locascio, ”Polymer microfluidic devices,” Talanta, vol. 56, pp. 267-287, Feb 11 2002.
[9] G. S. Fiorini and D. T. Chiu, ”Disposable microfluidic devices: fabrication, function, and application,” Biotechniques, vol. 38, pp. 429-446, Mar 2005.
[10] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, ”Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, Apr 7 2000.
[11] U. M. Attia, S. Marson, and J. R. Alcock, ”Micro-injection moulding of polymer microfluidic devices,” Microfluidics and Nanofluidics, vol. 7, pp. 1-28, Jul 2009.
[12] S. K. Sia and G. M. Whitesides, ”Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, vol. 24, pp. 3563-3576, Nov 2003.
[13] C. W. Tsao and D. L. DeVoe, ”Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, vol. 6, pp. 1-16, Jan 2009.
[14] J. C. McDonald and G. M. Whitesides, ”Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices,” Accounts of Chemical Research, vol. 35, pp. 491-499, 2002/07/01 2002.
[15] C. H. Lin, C. H. Chao, and C. W. Lan, ”Low azeotropic solvent for bonding of PMMA microfluidic devices,” Sensors and Actuators B-Chemical, vol. 121, pp. 698-705, Feb 20 2007.
[16] L. Brown, T. Koerner, J. H. Horton, and R. D. Oleschuk, ”Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents,” Lab on a Chip, vol. 6, pp. 66-73, 2006.
[17] M. Laher and S. Hild, ”A detailed micrometer scale investigation of the solvent bonding process for microfluidic chip fabrication,” Rsc Advances, vol. 4, pp. 5371-5381, 2014.
[18] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, ”Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment,” Lab on a Chip, vol. 7, pp. 499-505, 2007.
[19] Y. H. Tennico, M. T. Koesdjojo, S. Kondo, D. T. Mandrell, and V. T. Remcho, ”Surface modification-assisted bonding of polymer-based microfluidic devices,” Sensors and Actuators B-Chemical, vol. 143, pp. 799-804, Jan 7 2010.
[20] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, ”Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of Microelectromechanical Systems, vol. 14, pp. 590-597, Jun 2005.
[21] M. A. Eddings, M. A. Johnson, and B. K. Gale, ”Determining the optimal PDMS-PDMS bonding technique for microfluidic devices,” Journal of Micromechanics and Microengineering, vol. 18, Jun 2008.
[22] P. Kim and K. Y. Suh, ”Rigiflex, Spontaneously Wettable Polymeric Mold for Forming Reversibly Bonded Nanocapillaries,” Langmuir, vol. 23, pp. 4549-4553, 2007/04/01 2007.
[23] H. Lee, B. P. Lee, and P. B. Messersmith, ”A reversible wet/dry adhesive inspired by mussels and geckos,” Nature, vol. 448, pp. 338-U4, Jul 19 2007.
[24] M. Le Berre, C. Crozatier, G. Velve Casquillas, and Y. Chen, ”Reversible assembling of microfluidic devices by aspiration,” Microelectronic Engineering, vol. 83, pp. 1284-1287, 2006.
[25] Q. Chen, G. Li, Y. Nie, S. H. Yao, and J. L. Zhao, ”Investigation and improvement of reversible microfluidic devices based on glass-PDMS-glass sandwich configuration,” Microfluidics and Nanofluidics, vol. 16, pp. 83-90, Jan 2014.
[26] M. Rafat, D. R. Raad, A. C. Rowat, and D. T. Auguste, ”Fabrication of reversibly adhesive fluidic devices using magnetism,” Lab Chip, vol. 9, pp. 3016-9, Oct 21 2009.
[27] M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, ”Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluidics and Nanofluidics, vol. 10, pp. 1097-1107, 2010.
[28] C.-T. Chen and Y.-C. Chen, ”Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry,” Anal Chem, vol. 77, pp. 5912-5919, 2005/09/01 2005.
|