參考文獻 |
Chapter 1
[1.1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. vol. 57, pp. 1046-1048, 1990.
[1.2] R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, and I. Solomon, “Conditions of elaboration of luminescent porous silicon from hydrogenated amorphous silicon”, Phys. Rev. Lett. vol. 77, pp. 1885-1888, 1996.
[1.3] G. G. Qin, H. Z. Song, B. R. Zhang, J. Lin, J. Q. Duan, and G. Q. Yao, “Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon”, Phys. Rev. B, vol. 54, pp. 2548-2555, 1996.
[1.4] G. G. Qin, X. S. Liu, S. Y. Ma, J. Lin, G. Q. Yao, X. Y. Lin, and K. X. Lin, “Photoluminescence mechanism for blue-light-emitting porous silicon ”, Phys. Rev. B, vol. 55, pp. 12876-12879, 1997.
[1.5] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The Role of Oxygen”, Phys. Rev. Lett. vol. 82, pp. 197-200, 1999.
[1.6] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol. 46, pp. 15578–15581, 1992.
[1.7] A. P. Li, F. Flack, M. G. Lagally, M. F. Chisholm, K. Yoo, Z. Zhang, H. H. Weitering, and J. F. Wendelken, “Photoluminescence and local structure of Ge nanoclusters on Si without a wetting layer”, Phys. Rev. B, vol. 69, pp. 245310-245314 (2004).
[1.8] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, “Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells”, Phys. Rev. B, vol. 53, pp. R13242–R13245, 1996.
[1.9] M. K. Mishra, B. Tyagi, R. V. Jasra, “Synthesis and characterization of nano-crystalline sulfated zirconia by sol-gel method”, J. Mol. Catal. A-Chem. Vol. 223 (1-2), pp. 61-65, 2004.
[1.10] M. E. Rubin, G. Medeiros-Ribeiro, J. J. O''Shea, M. A. Chin, E. Y. Lee, P. M. Petroff, and V. Narayanamurti, “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy”, Phys. Rev. Lett. vol. 77, pp. 5268–5271, 1996.
[1.11] W. Sheng and J. P. Leburton, “Electron-hole alignment in InAs/GaAs self-assembled quantum dots: Effects of chemical composition and dot shape”, Phys. Rev. B, vol. 63, pp. 161301-161304, 2001.
[1.12] K. W. Sun, J. C. Wu, B. C. Lee, and C. P. Lee, “Selective growth and photoluminescence studies of InAs self-organized quantum dot arrays on patterned GaAs (001) substrates”, Nanotechnology, vol. 13, pp. 576–580, 2002.
[1.13] S. Sauvage, P. Boucaud, R. P. S. M. Lobo, F. Bras, G. Fishman, R. Prazeres, F. Glotin, J. M. Ortega, and J.M. Gérard, “Long polaron lifetime in InAs/GaAs self-assembled quantum dots”, Phys. Rev. Lett. vol. 88, pp. 177402-177405, 2002.
[1.14] W. Sheng and J.P. Leburton, “Anomalous quantum-confined stark effects in stacked InAs/GaAs self-assembled quantum dots”, Phys. Rev. Lett. vol. 88, pp. 167401-167404, 2002.
Chapter 2
[2.1] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. vol. 57, pp. 1046-1048, 1990.
[2.2] H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix”, J. Appl. Phys. vol. 89, pp. 237-243, 2001.
[2.3] R. S. Brusa, W. Deng, G. P. Karwasz, A. Zecca, G. Mariotto, P. Folegati, R. Ferragut, and A. Dupasquier, “Study of precipitate in Si-rich SiO2 films ”, Appl. Surf. Sci. vol. 194, pp. 106-111, 2002.
[2.4] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, “Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiO2 matrix”, J. Non-Crys. Solids vol. 227-230, pp. 507-512, 1998.
[2.5] M. Meunier, J. H. Flint, J. S. Haggerty, and D. Adler, “Laser-induced chemical vapor deposition of hydrogenated amorphous silicon. II. Film properties”, J. Appl. Phys. vol. 62, pp. 2822-2829, 1987.
[2.6] T. F. Deutsch, “Infrared laser photochemistry of silane”, J. Chem. Phys. vol. 70, pp. 1187-1192, 1979.
[2.7] G. Lucovsky, “A structural interpretation of the infrared-absorption spectra of a-Si:H:O alloys”, Sol. Energy Mater. vol. 8, pp. 165-175, 1982.
[2.8] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[2.9] H. R. Philipp, J. Non-Cryst. Solids, vol. 8-10, pp. 627, 1972.
[2.10] R. J. Temkin, “Analysis of radial-distribution function of SiOx”, J. Non-Cryst. Solids, vol. 17, pp. 215-230, 1975.
[2.11] S. Hayashi, T. Nagareda, Y. Kanzawa, and K. Yamamoto, “Photoluminance of Si-rich SiO2-films/Si clusters as luminescent centers”, Jpn. J. Appl. Phys., Part 1, vol. 32, pp. 3840-3845, 1993.
[2.12] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films”, J. Appl. Phys. vol. 92, pp. 4678-4683, 2002.
[2.13] G. Allan, C. Delerue, and M. Lannoo, “Electronic structure of amorphous silicon nanoclusters”, Phys. Rev. Lett. vol. 78, pp. 3161-3164, 1997.
[2.14] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995.
[2.15] N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride”, Phys. Rev. Lett. vol. 86, pp. 1355-1357, 2001.
[2.16] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
[2.17] Z. Knittl, Optics of thin films (London, New York, Wiley, 1976).
[2.18] M. I. Alayo, I. Pereyra, W. L. Scopel, and M. C. A. Fantini, “On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films”, Thin Solid Films, vol. 402, pp. 154-161, 2002.
[2.19] W. L. Scopel, M. C. A. Fantini, M. I. Alayo, and I. Pereyra, “Structural investigation of Si-rich amorphous silicon oxynitride films”, Thin Solid Films, vol. 425, pp. 275-281 (2003).
Chapter 3
[3.1] L. Brus: Light Emission in Silicon. From Physics to Devices, Semiconductors and Semimetals, eds. D. Lockwood (Academic, New York, 1998) Vol. 49, p. 303.
[3.2] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995.
[3.3] T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, and P. D. Townsend, “Optical properties of silicon nanoclusters fabricated by ion implantation”, J. Appl. Phys. vol. 83, pp. 6018-6022, 1998.
[3.4] S. Furukawa and T. Miyasato, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 5726-5729, 1988.
[3.5] Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang, and X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix”, Appl. Phys. Lett. vol. 81, pp. 4174-4176, 2002.
[3.6] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bläsing, “Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach”, Appl. Phys. Lett. vol. 80, pp. 661-663, 2002.
[3.7] M. Ehbrecht and F. Huisken, “Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane”, Phys. Rev. B, vol. 59, pp. 2975-2985, 1999.
[3.8] J. A. Carlisle, M. Dongol, I. N. Germanenko, Y. B. Pithawalla, and M. S. El-Shall, “Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core”, Chem. Phys. Lett. vol. 326, pp. 335-340, 2000.
[3.9] G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement”, Appl. Phys. Lett. vol. 80, pp. 4834-4836, 2002.
[3.10] G. Lucovsky, “A structural interpretation of the infrared-absorption spectra of a-Si:H:O alloys”, Sol. Energy Mater. vol. 8, pp. 165-175, 1982.
[3.11] J. L. Yeh and S. C. Lee, “Structural and optical properties of amorphous silicon oxynitride”, J. Appl. Phys. vol. 79, pp. 656-663, 1995.
[3.12] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B, vol. 28, pp. 3225-3233, 1983.
[3.13] T. F. Deutsch, “Infrared laser photochemistry of silane”, J. Chem. Phys. vol. 70, pp. 1187-1192, 1979.
[3.14] D. Fernández, P. González, J. Pou, E. García, J. Serra, B. León, M. Pérez-Amor, and C. Garrido, “CO2 laser chemical vapor deposition of silica films in a parallel configuration: A study of gas phase phenomena”, J. Vac. Sci. Technol. A, vol. 12, pp. 484-493, 1994.
[3.15] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[3.16] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, “Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiO2 matrix”, J. Non-Crys. Solids vol. 227-230, pp. 507-512, 1998.
[3.17] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
Chapter 4
[4.1] R. Tsu, “Silicon-based quantum-wells”, Nature (London), vol. 364, pp. 19-19, 1993.
[4.2] D. A. B. Miller, “Optoelectronics-silicon sees the light”, Nature (London), vol. 378, pp. 238-238, 1995.
[4.3] D. Lockwood, Light Emission in Silicon, From Physics to Devices. Semiconductors and Semimetals (Academic, New York, 1998) vol. 49
[4.4] B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice”, J. Appl. Phys. vol. 92, pp. 3564-3568, 2002.
[4.5] B. Garrido Fermandez, M. López, C. Garcia, A. Pérez-Rodriguez, J. R. Marante, C. Bonafos, M. Carrada, and A. Claverie, ”Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2”, J. Appl. Phys. vol. 91, pp. 798-807, 2002.
[4.6] M. Molinari, H. Rinnert, and M. Vergnat, “Visible photoluminescence in amorphous SiOx thin films prepared by silicon evaporation under a molecular oxygen atmosphere”, Appl. Phys. Lett. vol 82, pp. 3877-3879, 2003.
[4.7] K. S. Min, K. V. Schlegov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, “Photorefractive grating formation in piezoelectric La3Ga5SiO14:Pr3 + crystals”, Appl. Phys. Lett. vol. 69, pp. 2003-2005, 1996.
[4.8] M. V. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum Dots: The role of oxygen”, Phys. Rev. Lett. vol. 82, pp. 197-200, 1999.
[4.9] Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, “Quantum confinement and light-emission in SiO2/Si superlattices”, Nature (London), vol. 378, pp. 258-260, 1995
[4.10] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials”, Phys. Rev. B, vol. 46, pp. 15578-15581, 1992.
[4.11] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, “Photoluminescence properties of silicon nanocrystals as a function of their size”, Phys. Rev. B, vol. 62, pp. 15942-15951, 2000.
[4.12] Y. Kanzawa, S. Hayashi, and K. Yamamoto, J. Phys.: Condens. Matter, vol. 8, pp. 4823, 1996.
[4.13] H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix”, J. Appl. Phys. vol. 89, pp. 237-243, 2001.
Chapter 5
[5.1] R. Tsu, “Silicon-based quantum-wells”, Nature (London), vol. 364, pp. 19-19, 1993.
[5.2] D. A. B. Miller, “Optoelectronics-silicon sees the light”, Nature (London), vol. 378, pp. 238-238, 1995.
[5.3] L. Brus: Light Emission in Silicon. From Physics to Devices, Semiconductors and Semimetals, eds. D. Lockwood (Academic, New York, 1998) Vol. 49, p. 303.
[5.4] Q. Zhang, S. C. Bayliss, D. A. Hutt, “Blue photoluminescence and local structure of Si nanostructures embedded in SiO2 matrices”, Appl. Phys. Lett. vol. 66, pp. 1977-1979, 1995.
[5.5] B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice”, J. Appl. Phys. vol. 92, pp. 3564-3568, 2002.
[5.6] D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova, and H. Hofmeister, “Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films”, J. Appl. Phys. vol. 92 pp. 4678-4683, 2002.
[5.7] C. T. Lee and C. H. Lin, “Si nanocrystals embedded in Si euboxide matrix grown by laser-assisted chemical vapor deposition at room temperature”, Jpn. J. Appl. Phys., Part 1, vol. 43, pp. 2793-2794, 2004.
[5.8] N. I. Cho, Y. M. Kim, C. Hong, H. B. Chae, C. K. Kim, and B. T. Lee, “A study of the effect of UV laser annealing on a-SiC films for structure ordering”, J. Korean Phys. Soc. vol. 37, pp. 998-1002, 2000.
[5.9] G.H. Kroll, P.J. Benning, T.R. Ohno, J.H. Weaver, L.P.F. Chibante, and R.E. Smalley, “Interaction of O2 with C60-photon-induced oxidation”, Chem. Phys. Lett. vol. 181, pp. 112-116, 1991.
[5.10] D. Gracin, V. Borjanovic, B. Vlahovic, A. Sunda-Meya, T. M.Patterson, J. M. Dutta, S. Hauger, I. Pinayev, M. E. Ware, D. Alexson, R. J. Nemanich, B. Von Roedern, “Selective bond breaking in amorphous hydrogenated silicon by using Duke FEL”, Nucl. Instrum. & Methods A, vol. 475, pp. 635-639, 2001.
[5.11] G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, “Oxygen-bonding environments in glow-discharge-deposited amorphous silicon-hydrogen alloy films”, Phys. Rev. B, vol. 28, pp. 3225-3233, 1983.
[5.12] E. Fogarassy, A. Slaoui, C. Fuchs, and J. L. Regolini, “Rapid thermal oxidation of silicon monoxide”, Appl. Phys. Lett. vol. 51, pp. 337-339, 1987.
[5.13] J. C. Knights, R. A. Street, and G. Lucovsky, “Electric and structural properties of plasma-deposited a-Si:O:H-story of O2”, J. Non-Cryst. Solids. vol. 35&36, pp. 279-284, 1980.
[5.14] H. Touir, K. Zellama, and J. F. Morhange, “Local Si-H bonding environment in hydrogenated amorphous silicon films in relation to structural inhomogeneities”, Phys. Rev. B, vol. 59, pp. 10076-10083, 1999.
[5.15] Z. X. Ma, X. B. Liao, J. He, W. C. Cheng, G. Z. Yue, Y. Q. Wang, and G. L. Kong, “Annealing behaviors of photoluminescence from SiOx:H”, J. Appl. Phys. vol. 83, pp. 7934-7939, 1998.
[5.16] D. V. Tsu, G. Lucovsky, B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0[5.17] G. Lucovsky, “Chemical bonding of alloy and dopant atoms in amorphous-silicon”, J. Phys. (Paris) Colloq. Vol. 42, pp. 741-744, 1981.
[5.18] J. L. Yeh and S. C. Lee, “Structural and optical properties of amorphous silicon oxynitride”, J. Appl. Phys. vol. 79, pp. 656-663, 1996.
[5.19] T. Inokuma, L. He, Y. Kurata, and S. Hasegawa, “Electron-spin-resonance spectra of silicon dangling bonds with oxygen back bonds in plasma-deposited amorphous SiOx”, J. Electrochem. Soc. vol. 142, pp. 2346-2351, 1995.
[5.20] M. J. Uren, J. H. Stathis, and E. Cartier, “Conductance measurements on Pb centers at the (111) Si:SiO2 interface”, J. Appl. Phys. vol. 80, pp. 3915-3922, 1996.
[5.21] B. Garrido Fermandez, M. López, C. Garcia, A. Pérez-Rodriguez, J. R. Marante, C. Bonafos, M. Carrada, and A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2”, J. Appl. Phys. vol. 91, pp. 798-807, 2002.
[5.22] E. San Andrés, A. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F. J. López, “Thermally induced modifications on bonding configuration and density of defects of plasma deposited SiOx:H films”, J. Appl. Phys. vol. 92, pp. 1906-1913, 2002.
[5.23] L. N. Dinh, L. L. Chase, M. Balooch, W. J. Siekhaus, and F. Wooten, “Optical properties of passivated Si nanocrystals and SiOx nanostructures”, Phys. Rev. B, vol. 54, pp. 5029-5037, 1996.
[5.24] N. A. Hill and K. B. Whaley, “Size dependence of excitons in silicon nanocrystals”, Phys. Rev. Lett. vol. 75, pp. 1130-1133, 1995.
[5.25] N. M. Park, T. S. Kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Appl. Phys. Lett. vol. 78, pp. 2575-2577, 2001.
[5.26] T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, and S. Hasegawa, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, J. Appl. Phys. vol. 83, pp. 2228-2234, 1998.
[5.27] M. Molonari, H. Rinnert, and M. Vergnat, “Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen”, Appl. Phys. Lett. vol. 79, pp. 2172-2174, 2001. |