所別:生醫科學與工程學系生物醫學工程碩士班 生醫材料與技術組(一般生) 科目:生物化學 共 5 頁 第 1 頁 本科考試可使用計算器,廠牌、功能不拘

#### I. <u>單選題 (共50</u>分)

- 1. (2%) A buffer contains 0.01 mole of lactic acid (pKa = 3.86) and 0.05 mole of sodium lactate per liter. What is the pH of the buffer?
  - (A) 4.6 (B) 5.8 (C) 7.4 (D) 9.6 (E) 12.97
- 2. (2%) Which of following amino acid cannot be converted to pyruvate during catabolism?
  - (A) Glycine (B) Serine (C) Tryptophan (D) Threonine (E) Leucine
- 3. (2%) Submaxillarus protease (mouse submaxillary gland) can cleave polypeptides at specific point of
  - (A) Glutamic acid (B) Aspartic acid (C) Tyrosine (D) Arginine (E) None of above
- 4. (2%) What is the most abundant class of immunoglobulin?
  - (A) IgA (B) IgG (C) IgD (D) IgE (E) IgM
- 5. (2%) In the first stage of protein biosynthesis, activation of amino acids is performed by enzymes of \_\_\_\_\_
  - (A) N-formylmethionyl-tRNA fMET
  - (B) Peptidyl transferase
  - (C) Ornithine transcarbamoylase
  - (D) Aminoacyl-tRNA synthetases
  - (E) N-acetylglutamate synthase
- 6. (2%) Which of the following description about the function of enzyme used in recombination DNA technology is correct?
  - (A)Alkaline phosphatase removes nucleotidses from the 5'ends of a duplex to expose single-stranded 3'ends.
  - (B) Polynucleotide kinase adds a phosphate to the 5'-OH end of a polynucleotide to label it or permit ligation.
  - (C) Terminal transferase makes a DNA copy of an RNA molecule.
  - (D)Exonuclease III adds homopolymer tails to the 3'-OH ends of a linear duplex.
  - (E) Type II restriction endonucleases joins two DNA molecules or fragments.
- 7. (2%) Which class of enzyme functions to catalyze the reaction of "addition of groups to double bonds"?
- (A)Isomerases (B)Transferases (C) Ligases (D) Lyases (E) Oxidoreductases
- 8. (2%) Please order the following procedures for the cholesterol biosynthesis in animals.
  - I. Activation of isoprene units
  - II. Formation of four rings of the steroid nucleus
  - III. Condensation of acetate units to form mevalonate
  - IV. Formation the 30-carbon linear squalene
  - $I \leftarrow VI \leftarrow II \leftarrow III (A)$
  - (B) II  $\rightarrow$  III  $\rightarrow$  I  $\rightarrow$  IA
  - (C) III  $\rightarrow$  I  $\rightarrow$  IV  $\rightarrow$  II
  - (D)  $I \rightarrow II \rightarrow III \rightarrow IV$
  - (E) IV  $\rightarrow$  II  $\rightarrow$  I  $\rightarrow$ III

注: 背面有試題

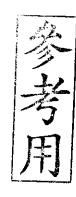
所別:生醫科學與工程學系生物醫學工程碩士班 生醫材料與技術組(一般生) 科目:生物化學 共 5 頁 第 2 頁本科考試可使用計算器,廠牌、功能不拘 \*請在答案卷(卡)內作答

- 9. (2%) Which of following description regarding the DNA replication is correct?
  - (A) DNA replication occurs with very high fidelity and at a designated time in the cell cycle.
  - (B) DNA replication is carried out in three phases: initiation, elongation, and termination.
  - (C) The DNA replication starts at a single origin in bacteria and usually proceeds bi-directionally.
  - (D) DNA is synthesized in the  $5' \rightarrow 3'$  direction by DNA polymerases.
  - (E) All of the above.
- 10. (2%) Please calculate the  $K_i$  for a noncompetitive inhibitor if  $2\times10^{-4}$  M [I] yields 75% inhibition of an enzyme-catalyzed reaction?
  - (A)  $1.86 \times 10^{-5}$  M (B)  $3.46 \times 10^{-4}$  M (C)  $7.62 \times 10^{-4}$  M (D)  $6.66 \times 10^{-5}$  M (E)  $9.45 \times 10^{-5}$  M
- 11. (2%) Decoding of the nucleotide sequence in mRNA into the amino acid sequence of proteins depends on \_\_\_\_\_?
  - (A) tRNAs & Aminoacyl-tRNA synthetases
  - (B) rRNAs & Aminoacyl-tRNA synthetases
  - (C) Aminoacyl-tRNA synthetases
  - (D) tRNAs
  - (E) rRNAs
- 12. (2%) At the wobble position, a given base "A (Adenine)" in mRNA can base-pair with \_\_\_\_\_in tRNA?
  - (A) U
  - (B) U, C
  - (C) U, I
  - (D) C, U, I
  - (E) C, I
- 13. (2%) Which of the following description regarding the nucleic acid is correct?
  - (A) Messenger RNA transfers genetic information from DNA to ribosomes for protein synthesis.
  - (B) Single RNA strands can fold into hairpins, double stranded regions, or complex loops.
  - (C) The primary purines are adenine and guanine in both DNA and RNA.
  - (D) DNA strands with appropriate sequences can form hairpin/cruciform structures or tetraplex DNA.
  - (E) All of the above.
- 14. (2%) Which of the following combination regarding the biological lipid and its example is NOT correct?
  - (A) Fatty acids / Oleate
  - (B) Glycerolipids / Triacylglycerol
  - (C) Sphingolipids / Palmitoylcarnitine
  - (D) Saccharolipids / Lipopolysaccharide
  - (E) Prenol lipids / Retinol

多注

注:背面有試題 意:背面有試題

所別:生醫科學與工程學系生物醫學工程碩士班 生醫材料與技術組(一般生) 科目:生物化學 本科考試可使用計算器,廠牌、功能不拘


#### ■ For questions # 15 & 16:

The  $K_a$  of a weak acid HA is  $3\times10^4$ , please calculate:

- 15. (2%) The OH ion concentration in the solution? (A)  $3.85 \times 10^{-12}$  (B)  $1.49 \times 10^{-12}$  (C)  $7.83 \times 10^{-12}$  (D)  $4.47 \times 10^{-12}$  (E)  $9.55 \times 10^{-12}$
- 16. (2%) The degree of dissociation of the acid in a 0.15 M solution? (A) 4.46 (B) 6.21 (C) 8.92 (D) 12.42 (E) 13.38 %
- 17. (2%) Which of the following codons may serve as the start codon / initiator?
  - I. UUG
  - II. AUG
  - III. GUG
  - IV. UAA
  - V. UGA
  - VI. CUG
  - (A) I, III, V (B) III, IV, VI (C) II, III, VI (D) II, IV, VI (E) I, IV, V

#### ■ <u>For questions # 18 - 22</u>:

- I. Arginine
- II. Cysteine
- III. Glycine
- IV. Lysine
- V. Methionine
- VI. Asparagine
- 18. (2%) Which of the following combination where the amino acids are all positively charged? (A) I, II, III (B) I, IV (C) I, V, VI (D) I, III (E) I, VI
- 19. (2%) Which of the following combination where the amino acids are all hydrophobic? (A) I, II (B) II, VI (C) III, VI (D) I, IV (E) None of above
- 20. (2%) How many amino acid(s) is/are polar with uncharged R group?
  - (A) 1 (B) 2 (C) 3 (D) 4 (E) 5
- 21. (2%) Which of the following combination where the amino acids all contain aromatic residue(s)? (A) II, III (B) I, IV, V (C) II, III, VI (D) IV, V (E) None of above
- 22. (2%) How many amino acid(s) contain(s) sulfur atom?
  - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4



听別:生醫科學與工程學系生物醫學工程碩士班 生醫材料與技術組(一般生) 科目:生物化學 共 5 頁 第 4 頁本科考試可使用計算器,廠牌、功能不拘

- 23. (2%) The double helix structure of DNA is mainly stabilized by?
  - (A) Electrostatic interactions
  - (B) Hydrophobic interactions
  - (C) Ionic bonds
  - (D) Hydrogen bonds
  - (E) Phosphodiester bonds
- 24. (2%) Which of the following description about ATP reaction is NOT correct?
  - (A) The exergonic conversion of ATP to ADP or to AMP is coupled to many endergonic reactions and processes.
  - (B) Hydrolysis of ATP provides energy for bioprocess including translocation of RNA polymerase and ribosome movement.
  - (C) To maintain its high group transfer potential, ATP concentration must be held far above the equilibrium concentration by energy-yielding reactions of catabolism.
  - (D) ATP provides the energy for anabolic reactions, including the synthesis of information macromolecules, transfer of molecules across membranes against concentration and/or electrical potential gradients.
  - (E) ATP is the chemical link between catabolism and anabolism.
- 25. (2%) Which of the following description regarding the Glycolysis is NOT correct?
  - (A) Glycolysis is a near-universal pathway by which a glucose molecule is oxidized to three molecules of pyruvate with energy conserved as ATP and NADH.
  - (B) Glycolysis is tightly regulated in coordination with other energy-yielding pathways to assure a steady supply of ATP.
  - (C) The aim of the Preparatory phase is phosphorylation of glucose and its conversion to glyceraldehyde 3-phosphate.
  - (D) The aim of the Payoff phase is oxidative conversion of glyceraldehyde 3-phosphate to pyruvate and the coupled formation of ATP and NADH.
  - (E) All 10 glycolytic enzymes are in the cytosol, and all 10 intermediates are phosphorylated compounds of three or six carbons.



听別:生醫科學與工程學系生物醫學工程碩士班 生醫材料與技術組(一般生) 科目:生物化學 共 5 頁 第 5 頁 本科考試可使用計算器,廠牌、功能不拘

#### II. 計算題 (共 50 分)

(a) Please calculate the ΔG' for the complete oxidation of lactic acid to CO<sub>2</sub> and H<sub>2</sub>O through the given hint information below. (10%) (b) How many moles of ATP could be synthesized in the process at 40% efficiency? (5%)

<Hint>

(1) Glucose  $\rightarrow$  2 lactic acid

 $\Delta G_1$ ' = -52,000 cal/mole

(2) Glucose +  $6CO_2 \rightarrow 6CO_2 + 6H_2O$ 

 $\Delta G_2' = -686,000 \text{ cal/mole}$ 

2. Ten grams of butter were saponified; the nonsaponifiable fraction was extracted into 25 mL of chloroform. The absorbance of the chloroform solution in a 1 cm cuvette was 0.53 at 328nm and 0.48 at 458 nm. Please calculated the carotene and vitamin A content of the butter? The extinction coefficients for carotene and vitamin A at the above two wavelengths are given below. (15%)

|           | a <sup>1cm</sup> 1% in CHCl <sub>3</sub> |        |
|-----------|------------------------------------------|--------|
| Compound  | 328 nm                                   | 458 nm |
| Carotene  | 340                                      | 2200   |
| Vitamin A | 1550                                     | ~ 0    |

3. The follow data were recorded for the enzyme-catalyzed reaction  $S \rightarrow P$ .

| [S]                          | ν                                                |  |
|------------------------------|--------------------------------------------------|--|
| (M)                          | (nmoles×liter <sup>-1</sup> ×min <sup>-1</sup> ) |  |
| (M)<br>6.25×10 <sup>-6</sup> | 15.0                                             |  |
| 7.50×10 <sup>-5</sup>        | 56.25                                            |  |
| 1.00×10 <sup>-4</sup>        | 60                                               |  |
| $1.00 \times 10^{-3}$        | 74.9                                             |  |
| $1.00 \times 10^{-2}$        | 75                                               |  |

- (a) Please estimate  $V_{\text{max}}(3\%)$  and the  $K_{\text{m}}$  (Michaelis constant) (3%)
- (b) What would v be at [S] =  $2.5 \times 10^{-5}$  M? (4%)
- (c) What would  $\nu$  be at [S] =  $5.0 \times 10^{-5}$  M if the enzyme concentration was doubled? (10%)

