
國立中央大學104學年度碩士班考試入學試題

1. Fig. 1 shows a ring of charge q and of radius a. A charge -q with mass m is constrained to move along the x axis of the ring. The charge -q can perform oscillations. Considering the small oscillations, find the frequency of the oscillations. (25%)

- 2. An electric field E exists at any point in space. Find the stored energy density u at the point in term of the electric field E. (15%)
- 3. Describe the law of conservation of magnetic flux and its mathematic expression. (10%)
- 4. A toroidal coil with an air core and a rectangular cross section has N turns of coil and carries a current I. The dimensions of the toroid are shown in Fig. 2. Find the magnetic flux density inside the toroid ($r < R_2$), the flux linkage, and the self-inductance of the toroidal coil. (30%)

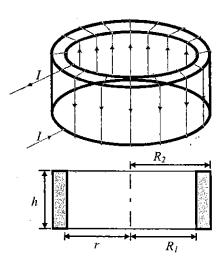


Fig. 2

- 5. A linearly polarized uniform plane wave propagates in the +x-direction in seawater (constitutive parameters: $\epsilon_r = 80$, $\mu_r = 1$, and $\sigma = 4$ S/m). The electric field intensity is $\vec{E} = \hat{x} \times 200 \times \cos(7.2 \times 10^6 \times \pi \times t)$ V/m at z=0.
 - (a) Determine the attenuation constant α , intrinsic impedance η_c , and skin depth δ . (9%)
 - (b) Determine the phase velocity of this plane wave in this seawater. (4%)
 - (c) Write the expressions for $\vec{E}(z,t)$ at z=0.5 m as functions of t. (7%)