台灣聯合大學系統 104 學年度碩士班招生考試試題 共一頁第 1 頁

類組: <u>電機類</u> 科目: <u>工程數學 D(3006)</u>

※請在答案卷內作答

--- \((10\%) \) Find a differentiable function f(t) with f(0) = 0 such that the differential equation

$$y^2 \sin t + yf(t)\frac{dy}{dt} = 0$$

is exact. Solve the equation.

 \equiv \ (10%) Find the general solution of the differential equation

$$y'' - 6y' + 9y = (1 + t + t^2 + \dots + t^{15})e^{3t}$$
.

三、(10%) Consider the initial value problem

$$x'' + p_0 x' + q_0 x = f(t), t \ge 0, x(0) = 0, x'(0) = 0.$$

(-) (5%) Determine p_0 and q_0 so that the solution x(t) can be expressed as

$$x(t) = \int_0^t e^{-(t-\tau)} \sin(t-\tau) f(\tau) d\tau, \ t \ge 0.$$

- $(\underline{})$ (5%) Compute x(t) if $f(t) = 2\delta(t-\pi)$.
- 四、(10%) Solve the initial-value problem

$$\vec{x}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \vec{x} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t, \ \vec{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

 Ξ > (10%) Find a formal Fourier series solution of the endpoint value problem

$$x'' + 4x = 4t$$
, $x'(0) = x'(1) = 0$.

注:背面有試題

類組:<u>電機類</u> 科目:<u>工程數學 D(3006)</u>

※請在答案卷內作答

 \nearrow (10%) Find the solutions to the linear systems $A\mathbf{x} = \mathbf{b}$ with the following rref (reduced row echelon form).

(Note: write "No solution" if it has no solution.)

1.
$$\operatorname{rref}([A \mid \mathbf{b}_1]) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -4 & 3 \\ 0 & 0 & 1 & 0 & -2 \end{bmatrix}$$
 2. $\operatorname{rref}([A \mid \mathbf{b}_2]) = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix}$

2.
$$\operatorname{rref}([A \mid \mathbf{b}_2]) = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$

3.
$$\operatorname{rref}([A \mid \mathbf{b}_3]) = \begin{bmatrix} 1 & 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -2 \end{bmatrix}$$

 \pm \((10%) Find the transformation matrices A of the following linear transformations y = T(x).

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 10 \\ 1 \\ -7 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 5 \\ 0 \\ -3 \end{bmatrix}$$

 (\equiv) \(\cdot(5\%)\) The rotation about \mathbf{e}_1 is shown in the right figure. This rotation is a transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, such that $T(\mathbf{e}_1) = \mathbf{c}_1, \quad T(\mathbf{e}_2) = \mathbf{c}_2, \quad T(\mathbf{e}_3) = \mathbf{c}_3,$

where $\{e_1, e_2, e_3\}$ is the standard basis of \Re^3 . According to trigonometry,

$$\mathbf{c}_1 = \mathbf{e}_1, \ \mathbf{c}_2 = \begin{bmatrix} 0 \\ \cos \theta \\ \sin \theta \end{bmatrix}, \ \mathbf{c}_3 = \begin{bmatrix} 0 \\ -\sin \theta \\ \cos \theta \end{bmatrix}.$$
 Find A such that of $T(\mathbf{x}) = A\mathbf{x}$.

// \((-) \((4\%) \) Suppose A is a square matrix and $A = A^T$. Show that

$$\mathbf{v}^T A \mathbf{v} \le \lambda_{\text{max}} \|\mathbf{v}\|^2$$
 for any vector \mathbf{v} ,

where λ_{max} is the maximum value of the eigenvalues of A.

(**Hint**: An $n \times n$ square matrix A is orthogonally diagonalizable if and only if A is symmetric.)

 $(\underline{})$ \((6%)\) Suppose that the transformation matrix of T is C, i.e., $T(\mathbf{x}) = C \mathbf{x}$. It is known that vectors \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 , \mathbf{b}_4 are <u>eigenvectors</u> of matrix C associated with the <u>eigenvalues</u> 18, 10, 4, -12,

$$C = \begin{bmatrix} 5 & 2 & 9 & -6 \\ 2 & 5 & -6 & 9 \\ 9 & -6 & 5 & 2 \\ -6 & 9 & 2 & 5 \end{bmatrix}, \quad \mathbf{b}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{b}_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \quad \mathbf{b}_4 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

Find the transformation matrix $[C]_B$ for T w.r.t. basis B, i.e., $[C]_B = ?$

(Notation definition for $[C]_B$: if y = Cx, then $[y]_B = [C]_B [x]_B$, where $[x]_B$ denotes the coordinate vector of xrelative to basis B.)

台灣聯合大學系統104學年度碩士班招生考試試題 共工 頁第三頁

類組: <u>電機類</u> 科目: <u>工程數學 D(3006)</u>

※請在答案卷內作答

九、(10%) Consider a Scara robot (or called two-link robot) shown in the following figure.

The relationship between velocity vector $\dot{\mathbf{v}}$ and joint velocities $\dot{\theta}_1, \dot{\theta}_2$ is the Jacobian matrix $J(\theta_1, \theta_2)$:

$$\dot{\mathbf{v}} = \begin{bmatrix} \dot{v}_1 \\ \dot{v}_2 \end{bmatrix} = J(\theta_1, \theta_2) \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}, \quad \text{where } J(\theta_1, \theta_2) = \begin{bmatrix} \ell_1 \sin \theta_1 + \ell_2 \sin(\theta_1 + \theta_2) & \ell_2 \sin(\theta_1 + \theta_2) \\ -\ell_1 \cos \theta_1 - \ell_2 \cos(\theta_1 + \theta_2) & -\ell_2 \cos(\theta_1 + \theta_2) \end{bmatrix}$$

When at a singular configuration (i.e., $\theta_2=0$), $J(\theta_1,\theta_2)$ with $\ell_1=1,\ell_2=1$, is reduced to

$$J(\theta_1, \theta_2 = 0) = \begin{bmatrix} 2\sin\theta_1 & \sin\theta_1 \\ -2\cos\theta_1 & -\cos\theta_1 \end{bmatrix}, \text{ and}$$

$$\operatorname{rref}(J(\theta_1, \theta_2 = 0)) = \begin{bmatrix} 1 & 1/2 \\ 0 & 0 \end{bmatrix}, \quad \operatorname{rref}(J^T(\theta_1, \theta_2 = 0)) = \begin{bmatrix} 1 & -\frac{\cos\theta_1}{\sin\theta_1} \\ 0 & 0 \end{bmatrix}$$

- (—) \ 1. (2%) Find a basis of range($J(\theta_1, \theta_2=0)$)={w}, i.e., w =? (note: range = column space) 2. (1%) Draw the range($J(\theta_1, \theta_2=0)$) on the $\dot{v}_1 \dot{v}_2$ plane.
- ($\stackrel{\frown}{}$) \ 1. (2%) Find the <u>orthogonal complement</u> of range(J) for θ_2 =0, i.e., $\ker(J^T)$ = span(\mathbf{h}) and \mathbf{h} =? (note: $\ker = \ker = \operatorname{hernel} = \operatorname{null space}$)
 - 2. (1%) Draw the vector **h** on the $\dot{v}_1 \dot{v}_2$ plane.
- (Ξ) . Let w and h be those obtained above .
 - 1. (2%) Does $J(\theta_1, \theta_2=0)$ **x** = (3**h w**) have solution(s) **x**?
 - 2. (2%) Find the orthogonal projection matrix P of $\operatorname{proj}_{\operatorname{span}(\mathbf{w})}$, and verify it by $P \mathbf{h} = \mathbf{0}$.

注:背面有試題

台灣聯合大學系統 104 學年度碩士班招生考試試題 共 4 頁 第 4 頁

類組:電機類 科目:工程數學 D(3006)

※請在答案卷內作答

 $+\cdot(-)\cdot$ (6%) Find the rotation matrix, with respect to the

standard basis, about the axis of b_2 by θ , where

$$\mathbf{b}_1 = \begin{bmatrix} 0.6 \\ 0.8 \\ 0 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} -0.8 \\ 0.6 \\ 0 \end{bmatrix}, \quad \mathbf{b}_3 = \mathbf{e}_3.$$

It is known that the rotation matrix about e_2 is

$$Rot(\mathbf{e}_{2}, \theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

(Hint: Similarity transformation)

- (二) \ (4%) Write the <u>contra-positive</u> statements of the following statements. ("If not B, then not A" is a contra-positive form of "if A, then B")
 - 1. If the columns of $A \in \mathbb{R}^{m \times n}$ are linearly independent, then $n \le m$.
 - 2. *n* nonzero vectors are linearly <u>independent</u>, if they are <u>orthogonal</u>.
 - 3. If 0 is <u>not</u> an eigenvalue of A, then det $A \neq 0$.
 - 4. For any matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$, if the columns of B are linearly dependent, then those of AB are linearly dependent.

注:背面有試題