參考文獻 |
[1] Angelopoulos, V. (2008), The THEMIS mission, Space Sci. Rev., 141(1–4), 5–34, doi:10.1007/s11214-008-9336-1.
[2] Auster, H. U., et al. (2008), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141(1–4), 235–264, doi:10.1007/s11214-008-9365-9.
[3] Balogh, A., et al. (2005), Cluster at the bow shock: Introduction, Space Sci. Rev., 118, 155–160, doi:10.1007/s11214-005-3826-1
[4] Barnes, A. (1970), Theory of generation of bow-shock-associated hydromagnetic waves in the upstream interplanetary medium, Cosmic Electrodyn., 1, 90.
[5] Billingham, L., S. J. Schwartz, and D. G. Sibeck (2008), The statistics of foreshock cavities: Results of a Cluster survey, Ann. Geophys., 26, 3653–3667, doi:10.5194/angeo-26-3653-2008.
[6] Blanco-Cano, X., N. Omidi, and C. T. Russell (2006), Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath, J. Geophys. Res., 111, A10205, doi:10.1029/2005JA011421.
[7] Blanco-Cano, X., N. Omidi, and C. T. Russell (2009), Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry, J. Geophys. Res., 114, A01216, doi:10.1029/2008JA013406.
[8] Blanco-Cano, X., and S. J. Schwartz (1997), Identification of low frequency kinetic wave modes in the Earth’s ion foreshock, Ann. Geophys., 15, 273–288 , doi:10.1007/s00585-997-0273-1.
[9] Burgess, D. (1997), What do we really know about upstream waves?, Adv. Space Res., 20(4–5), 673–682, doi:10.1016/S0273-1177(97)00455-9.
91
[10] Burlaga, L. F. (1971), Hydromagnetic waves and discontinuities in the solar wind, Space Sci. Rev., 12, 600–657, doi:10.1007/BF00173345.
[11] Chao, J. K. (1970), Interplanetary collisionless shock waves, Rep. CSR TR-70-3, Cent. for Space Res., Mass. Inst. of Technol., Cambridge.
[12] Chao, J. K., D. J. Wu, C.-H. Lin, Y. H. Yang, X. Y. Wang, M. Kessel, S. H. Chen, and R. P. Lepping (2002), Models for the size and shape of the Earth′s magnetopause and bow shock, in Space Weather Study Using Multipoint Techniques, COSPAR Colloq. Ser., vol. 12, edited by L.-H. Lyu, pp. 127–134, Pergamon, Oxford.
[13] Colburn, D. S., and C. P. Sonett (1966), Discontinuities in the solar wind, Space Sci. Rev., 5, 439–506, doi:10.1007/BF00240575.
[14] Dimmock, A. P., Walker, S. N., Zhang, T. L., and Pope, S. A.: Spatial scales of the magnetic ramp at the Venusian bow shock, Ann. Geophys., 29, 2081-2088, doi:10.5194/angeo-29-2081-2011, 2011
[15] Edmiston, J. P., C. F. Kennel, and D. Eichler (1982), Escape of heated ions upstream of a quasiparallel shock, J. Geophys. Res..
[16] Ellison, D. C. (1981), Monte Carlo simulation of charged particles upstream of the earth′s bow shock, Geophys. Res. Lett., 8, 991.
[17] Eastwood, J. P., A. Balogh, M. W. Dunlop, T. S. Holbury, and I. Dandouras (2002), Cluster observations of fast magnetosonic waves in the terrestrial foreshock, Geophys. Res. Lett., 29(22), 2046, doi:10.1029/2002GL015582.
[18] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2003), On the existence of Alfvén waves in the terrestrial foreshock, Ann. Geophys., 21, 1457–1465, doi:10.5194/angeo-21-1457-2003.
[19] Eastwood, J. P., A. Balogh, C. Mazelle, I. Dandouras, and H. Rème (2004), Oblique propagation of 30 s period fast magnetosonic foreshock waves: A Cluster case
92
study, Geophys. Res. Lett., 31, L04804, doi:10.1029/2003GL018897.
[20] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005a), Quasi‐monochromatic ULF foreshock waves as observed by the four‐spacecraft Cluster mission: 1. Statistical properties, J. Geophys. Res., 110, A11219, doi:10.1029/2004JA010617.
[21] Eastwood, J. P., A. Balogh, E. A. Lucek, C. Mazelle, and I. Dandouras (2005b), Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation, J. Geophys. Res., 110, A11220, doi:10.1029/2004JA010618.
[22] Eastwood, J. P., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. S. Pickett, and R. A. Treumann (2005c), The foreshock, Space Sci. Rev., 118, 41–94, doi:10.1007/s11214-005-3824-3.
[23] Elaoufir, J. A., A. Mangeney, T. Passot, C. C. Harvey, and C. T. Russell (1990), Large amplitude MHD waves in the Earth’s proton foreshock, Ann. Geophys., 8, 297– 307.
[24] Fairfield, D. H. (1969), Bow shock associated waves observed in the far upstream interplanetary medium, J. Geophys. Res., 74(14), 3541–3553, doi:10.1029/JA074i014p03541.
[25] Fuselier, S. A. (1995), Ion distributions in the Earth’s foreshock upstream from the bow shock, Adv. Space Res., 15(8–9), 43–52, doi:10.1016/0273-1177(94)00083-D.
[26] Gary, S. P. (1991), Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review, Space Sci. Rev., 56(3–4), 373–415, doi:10.1007/BF00196632.
[27] Gary, S. P., J. T. Gosling, and D. W. Forslund (1981), The electromagnetic ion beam instability upstream of the Earth′s bow shock, J. Geophys. Res., 86(A8), 6691–6696,
93
doi:10.1029/JA086iA08p06691.
[28] Greenstadt, E. W., G. Le, and R. J. Strangeway (1995), ULF waves in the foreshock, Adv. Space Res., 15(8/9), 71–84,doi: 10.1016/0273-1177(94)00087-H.
[29] Hada, T., C. F. Kennel, and T. Terasawa (1987), Excitation of compressional waves and the formation of shocklets in the Earth′s foreshock, J. Geophys. Res., 92(A5), 4423–4435, doi:10.1029/JA092iA05p04423.
[30] Hobara, Y., S. N. Walker, M. Balikhin, O. A. Pokhotelov, M. Dunlop, H. Nilsson, and H. Rème (2007),Characteristics of terrestrial foreshock ULF waves: Cluster observations, J. Geophys. Res., 112, A07202, doi:10.1029/2006JA012142.
[31] Horbury, T. S., D. Burgess, M. Fränz, and C. J. Owen (2001), Three spacecraft observations of solar wind discontinuities, Geophys. Res. Lett., 28, 677–680, doi:10.1029/2000GL000121.
[32] Hoppe, M. M., C. T. Russell, L. A. Frank, T. E. Eastman, and E. W. Greenstadt (1981), Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE 1 and 2 observations, J. Geophys. Res., 86(A6), 4471–4492, doi:10.1029/JA086iA06p04471.
[33] Hudson, P. D. (1965), Reflection of charged particles by plasma shocks, Mon. Not. R. Astron. Soc., 131, 23.
[34] Hudson, P. D. (1970), Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611–1622, doi:10.1016/0032-0633(70)90036-X.
[35] Hsieh, W.-C., and J.-H. Shue (2013), Dependence of the oblique propagation of ULF foreshock waves on solar wind parameters, J. Geophys. Res. Space Physics, 118, 4151–4160, doi:10.1002/jgra.50225.
94
[36] Hsieh, W.-C., J.-H. Shue, J.-K. Chao, T.-C. Tsai, Z. Nemecek, and J. Safrankova (2014), Possible observational evidence of contact discontinuities, Geophys. Res. Lett., 41, doi:10.1002/2014GL062342.
[37] Kajdič, P., X. Blanco‐Cano, N. Omidi, and C. T. Russell (2011), Multispacecraft study of foreshock cavitons, Planet. Space Sci., 59, 705–714, doi:10.1016/j.pss.2011. 02.005.
[38] Knetter, T., F. M. Neubauer, T. Horbury, and A. Balogh (2004), Four-point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi:10.1029/2003JA010099.
[39] Landau, L. D., and E. M. Lifshitz (1960), Electrodynamics of continuous media, Pergamon Press.
[40] Lapenta, G., and J. U. Brackbill (1996), Contact discontinuities in collisionless plasmas: A comparison of hybrid and kinetic simulations, Geophys. Res. Lett., 23(14), 1713, doi:10.1029/96GL01845.
[41] Le, G., and C. T. Russell (1994), The morphology of ULF waves in the Earth’s foreshock, in Solar Wind Sources of Magnetospheric Ultra Low Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 87–98, AGU, Washington, D. C.
[42] Lee, M. A. (1982), Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth′s bow shock, J. Geophys. Res., 87(A7), 5063–5080, doi:10.1029/JA087iA07p05063.
[43] Lee, M. A. (1983), Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks, J. Geophys. Res., 88(A8), 6109–6119, doi:10.1029/JA088iA08p06109.
95
[44] Lee, M. A., and W.-H. Ip (1987), Hydromagnetic wave excitation by ionized interstellar hydrogen and helium in the solar wind, J. Geophys. Res., 92(A10), 11041–11052, doi:10.1029/JA092iA10p11041.
[45] Lepping, R., and K. Behannon (1980), Magnetic field directional discontinuities: 1. Minimum variance errors, J. Geophys. Res., 85(A9), 4695–4703, doi:10.1029/JA085iA09p04695.
[46] Lin, Y., and L. C. Lee (1993a), Structure of Reconnection Layers in the Magnetosphere, Space Science Reviews, 65(1-2), pp. 59-179
[47] Lin, Y., and L. C. Lee (1993b), Structure of the dayside reconnection layer in resistive MHD and hybrid models, J. Geophys. Res., 98(A3), 3919–3934, doi:10.1029/92JA02363.
[48] Mazelle, C., et al. (2003), Production of gyrating ions from nonlinear wave particle interaction upstream from the Earth’s bow shock: A case study from Cluster‐CIS, Planet. Space Sci., 51, 785–795, doi:10.1016/j.pss.2003. 05.002.
[49] McFadden, J. P., C. W. Carlson, D. Larson, V. Angelopoulos, M. Ludlam, R. Abiad, and B. Elliot (2008), The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141, 277–302, doi:10.1007/s11214-008-9440-2.
[50] Narita, Y., K.-H. Glassmeier, S. Schäfer, U. Motschmann, M. Fränz, I. Dandouras, K.-H. Fornaçon, E. Georgescu, A. Korth, H. Rème, and I. Richter (2004), Alfvén waves in the foreshock propagating upstream in the plasma rest frame: statistics from Cluster observations, Ann. Geophys., 22, 2315–2323, doi:10.5194/angeo-22-2315-2004, 2004.
[51] Narita, Y., K.-H. Glassmeier, S. Schäfer, U. Motschmann, K. Sauer, I. Dandouras, K.-H. Fornaçon, E. Georgescu, and H. Rème (2003), Dispersion analysis of ULF waves in the foreshock using cluster data and the wave telescope technique, Geophys.
96
Res. Lett., 30(13), 1710, doi:10.1029/2003GL017432.
[52] Neugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl (1984), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89(A7), 5395–5408, doi:10.1029/JA089iA07p05395.
[53] Omidi, N., D. G. Sibeck, and X. Blanco‐Cano (2009), Foreshock compressional boundary, J. Geophys. Res., 114, A08205, doi:10.1029/2008JA013950.
[54] Parks, G. K., et al. (2006), Larmor radius size density holes discovered in the solar wind upstream of Earth’s bow shock, Phys. Plasmas, 13, 050701, doi:10.1063/1.2201056.
[55] Russell, C. T., and M. Hoppe (1983), Upstream waves and particles, Space Sci. Rev., 34, 155, doi:10.1007/BF00194624.
[56] Russell, C. T., W. Riedler, K. Schwingenschuh, and Ye. Yeroshenko (1987), Mirror instability in the magnetosphere of comet Halley, Geophys. Res. Lett., 14(6), 644–647, doi:10.1029/GL014i006p00644.
[57] Schwartz, S. J. (1995), Hot flow anomalies near the Earth’s bow shock, Adv. Space Res., 15(8–9), 107–116, doi:10.1016/0273-1177(94)00092-F.
[58] Schwartz, S. J. (1998), Shock and discontinuity normals, mach numbers, and related parameters, ISSI Sci. Rep. Ser., 1, 249–270.
[59] Schwartz, S. J., D. Sibeck, M. Wilber, K. Meziane, and T. S. Horbury (2006), Kinetic aspects of foreshock cavities, Geophys. Res. Lett., 33, L12103, doi:10.1029/2005GL025612.
[60] Schwartz, S. J., M. F. Thomsen, and J. T. Gosling (1983), Ions upstream of the Earth′s bow shock: A theoretical comparison of alternative source populations, J. Geophys. Res., 88(A3), 2039–2047, doi:10.1029/JA088iA03p02039.
97
[61] Sentman, D. D., J. P. Edmiston, and L. A. Frank (1981), Instabilities of low frequency, parallel propagating electromagnetic waves in the Earth′s foreshock region, J. Geophys. Res., 86(A9), 7487–7497, doi:10.1029/JA086iA09p07487.
[62] Shue, J.-H., et al. (1998), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691–17,700, doi:10.1029/98JA01103.
[63] Sibeck, D. G., N. Omidi, I. Dandouras, and E. Lucek (2008), On the edge of the foreshock: Model data comparisons, Ann. Geophys., 26, 1539–1544, doi:10.5194/angeo-26-1539-2008.
[64] Sibeck, D. G., T.‐D. Phan, R. Lin, R. P. Lepping, and A. Szabo (2002), Wind observations of foreshock cavities: A case study, J. Geophys. Res., 107(A10), 1271, doi:10.1029/2001JA007539.
[65] Smith, E. J. (1973), Identification of interplanetary tangential and rotational discontinuities, J. Geophys. Res., 78(13), 2054–2063, doi:10.1029/JA078i013p02054.
[66] Song, P., and C. T. Russell (1999), Time series data analyses in space physics, Space Sci. Rev., 87, 387–463, doi:10.1023/A:1005035800454.
[67] Song, P., C. T. Russell, and S. P. Gary (1994), Identification of low-frequency fluctuations in the terrestrial magnetosheath, J. Geophys. Res., 99(A4), 6011–6025, doi:10.1029/93JA03300.
[68] Sonnerup, B. U. Ö. (1969), Acceleration of particles reflected at a shock front, J. Geophys. Res., 74, 1301.
[69] Sonnerup, B. U., and L. J. Cahill Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72(1), 171–183, doi:10.1029/JZ072i001p00171.
98
[70] Sonnerup, B. U. O., and M. Scheible (1998), Minimum and maximum variance analysis, in Analysis Methods for Multi-spacecraft Data, edited by G. Paschmann and P. W. Daly, Eur. Space Agency Spec. Publ., ESA SP-449, 185–220.
[71] Tsai, T. C., L. H. Lyu, J. K. Chao, M. Q. Chen, and W. H. Tsai (2009), A theoretical and simulation study of the contact discontinuities based on a Vlasov simulation code, J. Geophys. Res., 114, A12103, doi:10.1029/2009JA014121.
[72] Tsurutani, B. T., G. S. Lakhina, O. P. Verkhoglyadova, W. D. Gonzalez, E. Echer, and F. L. Guarnieri (2011), A review of interplanetary discontinuities and their geomagnetic effects, J. Atmos. Sol. Terr. Phys., 73, 5–19.
[73] Watanabe, Y. and T. Terasawa (1984), On the excitation mechanism of the low-frequency upstream waves, J. Geophys. Res., 89(A8), 6623–6630, doi:10.1029/JA089iA08p06623.
[74] Wilber, M., G. K. Parks, K. Meziane, N. Lin, E. Lee, Mazelle, C., and Harris, A. (2008), Foreshock density holes in the context of known upstream plasma structures, Ann. Geophys., 26, 3741-3755, doi:10.5194/angeo-26-3741-2008.
[75] Wilkinson, W. P. (2003), The Earth’s quasi-parallel bow shock: Review of observations and perspectives for Cluster, Planet. Space Sci., 51, 629– 647, doi:10.1016/S0032-0633(03)00099-0.
[76] Wu, B. H., J. K. Chao, W. H. Tsai, Y. Lin, and L. C. Lee (1994), A hybrid simulation of contact discontinuity, Geophys. Res. Lett., 21(18), 2059-2062, doi:10.1029/94GL01579.
[77] Zhang, H., Q.-G. Zong, D. G. Sibeck, T. A. Fritz, J. P. McFadden, K.-H. Glassmeier, and D. Larson (2009), Dynamic motion of the bow shock and the magnetopause observed by THEMIS spacecraft, J. Geophys. Res., 114, A00C12, doi:10.1029/2008JA013488.
99
[78] On line resources︰Artist′s concept of THEMIS in orbit. http://www.nasa.gov/sites/default/files/153094main_themis.jpg..
[79] On line resources︰Visualization of the 20 THEMIS ground station locations. http://www.nasa.gov/images/content/168655main_themis_gbo_net.jpg.
[80] On line resources︰ THEMIS configuration in the magnetotail during a substorm. http://cse.ssl.berkeley.edu/artemis/mission-models.html.
[81] On line resources︰THEMIS configuration in the radiation belts and their source region in the magnetotail. http://themis.ssl.berkeley.edu/overview.shtml.
[82] On line resources︰THEMIS configuration at the dayside magnetopause, in the magnetosheath, foreshock and the solar wind. http://themis.ssl.berkeley.edu/overview.shtml.
[83] On line resources︰OMNI data base website http://omniweb.gsfc.nasa.gov/html/HROdocum.html#3a |