參考文獻 |
[1] Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, pp.1536-1540, Aug. 2002.
[2] K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett., vol. 91, pp.227402, Nov. 2003.
[3] W. Dickson, G. A. Wurtz, P. Evans, D. O’Connor, R. Atkinson, R. Pollard, and A. V. Zayats, “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Phys. Rev. B, vol. 76, pp. 115411, Sept. 2007.
[4] R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans, and R. J. Pollard, “Anisotropic optical properties of arrays of gold nanorods embedded in alumina,” Phys. Rev. B, vol. 73, pp. 235402, Jun. 2006.
[5] Serap Aksu, Ahmet A. Yanik, Ronen Adato, Alp Artar, Min Huang, and Hatice Altug, “High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy,” Nano. Lett., vol. 10, pp. 2511-2518, Jun. 2010.
[6] S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express, vol. 19, pp.15532-15537, Aug. 2011.
[7] H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express, vol. 16, pp. 9144-9154, Jun. 2008.
[8] Amir Nevet, Nikolai Berkovitch, Alex Hayat, Pavel Ginzburg, Shai Ginzach, Ofir Sorias and Meir Orenstein, “Plasmonic nanoantennas for broad-band enhancement of two-photon emission from semiconductors,” Nano Lett., vol. 10, pp. 1848-1852, Apr. 2010.
[9] F. M. Zhu ,Y. Y. Zhang, L. F. Shen and Z. Gao, “Subwavelength Guiding of Terahertz Radiation by Shallowly Corrugated Metal Surfaces,” Journal of Electromagnetic Waves and Applications, vol. 26, pp. 120-129, Apr. 2012.
[10] A. Bahari and E. Amraie, “Propagation of surface hybrid modes on metallic cylindrical nanoshells,” Phys. of Plasmas, vol. 19, pp. 114502, Nov. 2012.
[11] Yuan-Fong Chau, Han-Hsuan Yeh, Din-Ping Tsai, “Surface plasmon effects arising from three-pair arrays of silver-shell nanocylinders,” Physics of Plasmas, vol. 16, pp. 022303, 2009.
[12] Y. G. Liu, W. C. H. Choy, W. E. I. Sha and W. C. Chew, “Unidirectional and wavelength-selective photonic sphere-array nanoantennas,” Optics Letters, vol. 37, pp. 2112-2114, 2012.
[13] F. Neubrech and Annemarie Pucci, “Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection”, Phys. Rev. Lett., vol. 101, pp. 157403, Oct. 2008.
[14] L. Wang, L. Cai, J. Zhang, W. Bai, H. Hu and G. Song, “Design of plasmonic bowtie nanoring array with high sensitivity and reproducibility for surface-enhanced Raman scattering spectroscopy,” J. Raman Spectrosc, vol 42(6), pp.1263-1266, 2011.
[15] Drude, P., “Zur elektronentheorie der metalle,” Annalen Der Physik, Vol. 306, No. 3, pp. 566-613, 1900.
[16] Drude, P., “Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte,” Annalen Der Physik, Vol. 308, No. 11, pp. 369-402, 1900.
[17] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Physical Review, vol 106, pp. 874-881, 1957.
[18] E. Stern and R. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Physical Review, vol. 120, pp.130, 1960.
[19] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” Springer-Verlag, vol.111, 1986.
Nathan Charles Lindquist, “Engineering metallic nanostructures for surface plasmon resonance sensing,” Dissertation, pp. 14-16, 2010.
[20] E. Kretschmann, “Die bestimmung optischer konstanten von metallen die bestimmungoptischer konstanten von metallen durch anregung von oberfliichenplasmaschwingungen,” Z. Physik, vol. 241, pp. 313, 1971.
[21] A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 5358, 1972.
[22] Y. J. Jang, C. Simer, T. Ohm, “Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue,” Mater. Res. Bull., vol. 41, pp.67-77, 2006.
[23] L. Lei, N. Wang, X. M. Zhang, Q. Tai, D. P. Tsai, H. L. W. Chan, “Optofluidic planar reactors for photocatalytic water treatment using solar energy,” Biomicrofluidics, vol. 4, pp.43004, 2010.
[24] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, “Environmental
[25] Applications of Semiconductor Photocatalysis,” Chem. Rev., vol. 95, pp. 69-96, 1995.
[26] J. J. Chen, Jeffrey C.S. Wu, P. C. Wu, D.P. Tsai, J. Phys. Chem. C (2012) 116 26535.
[27] Y.L. Chen, L.-C. Kuo, M.L. Tseng, H.M. Chen, C.-K. Chen, H.J. Huang, R.-S. Liu, D. P. Tsai, “ZnO nanorod optical disk photocatalytic reactor for photodegradation of methyl orange,” Opt. Expr., vol. 21(6), pp. 7240-7249, 2013.
[28] Z.W. Liu, W.B. Hou, P. Pavaskar, M. Aykol, S. B. Cronin, “Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination,” Nano Lett., vol. 11(3), pp. 1111-1116, 2011.
[29] P.C.K. Vesborg, S.-I. In, J.L. Olsen, T.R. Henriksen, B.L. Abrams, Y.Hou, A. Kleiman-Shwarsctein, O. Hansen, I. Chorkendorff, “Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in μ-reactors,” J. Phys. Chem. C, vol. 114, pp. 1162-1168, 2010.
[30] C.Y. Chang, N.L. Wu, “Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor,” Ind. Eng. Chem. Res., vol. 49, pp. 12173-12179, 2010.
[31] H.C. Yatmaz, C. Wallis, C. R. Howarth, “The spinning disc reactor-studies on a novel TiO2 ,” Chemosphere, vol. 42, pp. 397, 2001.
[32] T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, “A review of intensification of photocatalytic processes,” Chem. Eng. Prog., vol. 46, pp. 781, 2007.
[33] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, “A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide,” J. AM. CHEM. SOC., vol. 130, pp. 1676-1680, Feb. 2008.
[34] H. Long, G. Yang, A. Chen, Y. Li, P. Lu., “Femtosecond Z-scan measurement of third-order optical nonlinearities in anatase TiO2 thin films,” Opt. Commun., vol. 282, pp. 1815-1818, 2009.
[35] X.M. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, “Plasmonic photocatalysis,” Rep. Prog. Phys., Vol. 76, pp. 046401, Mar. 2013.
[36] D. Li, L. Wang, G. Zhang, “,”Opt. Commun., vol. 286, pp. 182, 2013.
[37] L. M. Liz-Marzan and P. Mulvaney, “The assembly of coated nanocrystals,” J. Phys. Chem. B, vol. 107, pp. 7312, 2003.
[38] T. Ung, L. M. Liz-Marzan and P. Mulvaney, “Controlled method for silica coating of silver colloids, Influence of coating on the rate of chemical reactions,” Langmuir, vol. 14, pp. 3740-3748, 1998.
[39] F. Caruso, M. Spasova, V. Saigueirino-Maceira, L. M. Liz-Marzan, “Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates,” Advanced Materials, vol. 13, pp. 1090, 2001.
[40] P. Mulvaney, L. M. Liz-Marzan, M. Giersig, T. Ung , “Silica encapsulation of quantum dots and metal clusters,” J. Mater. Chem., vol. 10, pp. 1259, 2000.
[41] C. J. Zhong and M. M. Maye, “Core-shell assembled nanoparticles as catalysts,” Advanced Materials, vol. 13, pp. 1507-1511, 2001.
[42] V. Hardikar and E. Matijevic, “Influence of Ionic and Nonionic Dextrans on Formation of Calcium Hydroxide and Calcium Carbonate Particles,” J. Colloid Interface Sci, vol. 221, pp. 133, 2000.
[43] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N. Halas, “Nanoengineering of optical resonances,” J. Chem. Phys. Lett., vol. 288, pp. 243, 1998.
[44] R. Sellappan, M. G. Nielsen, F. González-Posada, P.C.K. Vesborg, I. Chorkendorff and D. Chakarov, “Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites,” J. of Catalysis, vol. 307, pp. 214, 2013.
[45] Y. F. Chau, Y. J. Lin and D. P. Tsai, “Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars,” Optics Express, vol. 18, pp. 3510-3518, 2010.
[46] Y. F. Chau, H. H. Yeh, D. P. Tsai, “ A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric holes,” J. of Electromagn. Waves and appli., vol. 24, pp. 1621-1632, Jul. 2010.
[47] J.P. Zimmer, S.W. Kim, S. Ohnishi, E. Tanaka, J.V. Frangioni and M.G. Bawendi, “Size Series of Small Indium Arsenide-Zinc Selenide Core-Shell Nanocrystals and Their Application to In Vivo Imaging,” J. Am. Chem. Soc., vol. 128, pp. 2526-2527, 2006.
[48] A. Merlen, V. Gadenne, J. Romann, V. Chevallier, L. Patrone, J. C. Patrone, “Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates,” Nanotechnology, vol. 20, pp. 215705, 2009.
[49] D. J. Wu, X. D. Xu, X. Liu, “Electric field enhancement in bimetallic gold and silver nanoshells,” J. Solid State Commun., vol. 148, pp. 163-167, 2008.
[50] P. M. Gresho and R. L. Sani, “Incompressible Flow and Finite Element Method,” Vol. 1 & 2, Wiley, New York, 2000.
[51] COMSOL Multiphysics TM, http://www.comsol.com.
[52] Okamoto T and In Kawata S (Ed), “Near-Field Optics and Surface Plasmon Polaritons,” Springer, Berlin, pp. 99, 2001.
[53] Y. F. Chau, “Surface Plasmon Effects excited by the Dielectric Hole in a Silver-shell Nanospherical Pair,” Plasmonics, Vol. 4, pp. 253-259, 2009.
[54] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys Rev B, vol. 6, pp. 4370-4379, 1972.
[55] E. Palik, Handbook of Optical Constants of Solids; Academic Press Inc.: U.S., 1985.
[56] R. Sardar, T.B. Heap, J.S. Shumaker-Parry, “Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionali- zation approach,” J. Am. Chem. Soc., vol. 129, pp. 5356, 2007.
[57] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett., vol. 288, pp. 243, 1998.
[58] C. L. Nehl, N. K. Grady, G. P. Goodrich, F. Tam, N. J. Halas, J. H. Hafner, “Scattering Spectra of Single Gold Nanoshells,” Nano let., vol. 4, pp. 2355-2359, 2004.
[59] P. K. He, M. Zhang, D. M. Yang and J. J. Yang, “Preparation of Au-loaded TiO2 by photochemical deposition and ozone photocatalytic decomposition,” Surf. Rev. Lett., vol. 13, pp. 51-55, 2006.
[60] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science, vol. 302, pp. 419, 2003.
[61] S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, Berlin, 2007.
[62] S. Sederberg and A. Y. Elezzabi, “Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,” Opt. Express, vol. 19, pp. 15532-15537, 2011.
[63] J. S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., vol. 10, pp. 2105-2110, 2010.
[64] Y. F. Chau, H. H. Yeh and D. P. Tsai, “A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric holes,” J. of Electromagn. Waves and appli., vol. 24, pp. 1621-1632, Jul., 2010.
[65] Yuan-Fong Chau, and Han-Hsuan Yeh, “A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances,” J. nanopart. Res., vol 23, pp. 637-644, 2011.
[66] G. Lévêque and O. J. F. Martin, “Tunable composite nanoparticle for plasmonics,” Opt. Lett., vol. 31, pp. 2750-2752, 2006.
[67] A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nature Photonics, vol. 2, pp. 307-310, 2008.
[68] F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett., vol. 101, pp. 157403, 2008.
[69] Y. F. Chau, H. H. Yeh, C. C. Liao, H. F. Ho, C. Y. Liu and D. P. Tsai, “Controlling surface plasmon of several-pair arrays of silver-shell nanocylinders,” Appl. Opt., vol. 49, pp. 1163-1169, 2010.
[70] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
[71] S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, “High-throughput Nanofabrication of Plasmonic Infrared NanoAntenna Arrays for Vibrational Nanospectroscopy,” Nano. Lett., vol. 10, pp. 2511-2518, 2010.
[72] Y. F. Chau, H. H. Yeh and D. P. Tsai, “Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair”, Applied Optics, vol.47, pp.5557-5561, Oct. 2008.
[73] C. Noguez, “Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment,” J. Phys. Chem. C, vol. 111, pp. 3806-3819, Feb. 2007.
[74] J.Y. Suh, M. D. Huntington, C. H. Kim, W. Zhou, M.l R. Wasielewski, and T. W. Odom , “Extraordinary Nonlinear Absorption in 3d Bowtie Nanoantennas,” Nano Lett., vol. 12, pp. 269-274, 2012.
[75] A. Leitner, W. Rechberger, A. Hohenau, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun., vol. 220, pp. 137, 2003.
[76] I. S. Maksymov, A. R. Davoyan, A. E. Miroshnichenko, C. Simovski, P. Belov, and Yu. S. Kivshar, “Multifrequency tapered plasmonic nanoantennas,” Opt. Commun., vol. 285, pp. 821-824, 2012.
[77] R. S. Pavlov, A. G. Curto, and N. F. van Hulst, “Log-periodic optical antennas with broadband directivity,” Opt. Commun., vol. 285, pp. 3334-3340, Jul. 2012.
[78] G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett., vol 87, PP. 131102, 2005.
[79] X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q Yang, X. N. Zhang, Y. G. Ma, H. K. Yu and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett., vol. 9, pp. 4515-4519, 2009.
[80] P. Bharadwaj, B. Deutsch B and L. “Novotny Optical antennas,” Adv. Opt. Photon, pp. 438-483, 2009.
[81] E. Verhagen, M. Spasenović, A. Polman, L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett., vol. 102, pp. 203904, 2009.
[82] D. Anuj, C. Michael and V. D. Tuan, “Bimodal behavior and isobestic transition pathway in surface plasmon resonance sensing,” Optics Express, vol. 20, pp. 23630-23642, 2012.
[83] Y. F. Chau, M. W. Chen, D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Applied Optic, vol. 48, pp. 617-622, 2009.
[84] L. Tong, J. Lou and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Optics Express, vol. 12, pp. 1025-1035, 2004.
[85] M. Law et al. “Nanoribbon waveguides for subwavelength photonics integration. Science,” vol. 305, pp.1269-1273, 2004.
[86] Pile D. F. P., “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Gramotnev DK, Opt. Lett. Vol. 30, pp. 1186-1188, 2005.
[87] D. R. Mason, D.K. Gramotnev and K. S. Kim, “Wavelength-dependent transmission through sharp 90◦ bends in sub-wavelength metallic slot waveguides.” Opt. Express, vol. 18, pp. 16139-16145, 2010.
[88] Y. J. Chang and Y. C. Liu, “Polarization-insensitive subwavelength sharp bends in asymmetric metal/multi-insulator configuration,” Optics Express, vol. 19, pp. 3063-3076, .2011.
[89] D. K. Gramotnev and Vernon K. C., “Adiabatic nano-focusing of plasmons by sharp metallic wedges,” Appl. Phys. B, vol. 86, pp. 7-17, 2007.
[90] D. E. Chang, A. S. Sorensen, E. A. Demler, M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys., vol. 3, pp. 807-812, 2007.
[91] C. E. Roma´n-Velazquez, C. Noguez, R. G. Barrera, “Optical Properties of a Spheroid–Substrate System. Phys,” Status Solidi (a), vol. 175, pp. 393-397, 1999.
[92] Y. Liang, W. Peng, R. Hu, H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express, vol. 21, pp. 6139-6152, 2013.
[93] H. Ditlbacher , A. Hohenau , D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” PRL, vol. 95, pp. 257403, 2005.
[94] J. C. Quail, J. G. Rako and H. J. Simon, “Long range surface-plasmon modes in silver and aluminum films,” Optics Letters, vol. 8, pp. 377-379, 1983.
[95] T. Nikolajsen, K. Leosson I. Salakhutdinov and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Applied Physics Letters, vol. 82, pp. 668-670. 2003.
[96] E. N. Economon, “Surface-plasmonin thin films,” Physical Review, vol. 182, pp. 539-554, 1969.
[97] D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett., vol. 47, pp. 1927-1930, 1981.
|