博碩士論文 102324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.16.137.229
姓名 賴臆升(Yi-Sheng Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分子/二氧化矽混成製備透明及疏水性質之硬質膜
(Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity and transparent ability)
相關論文
★ 快速合成具核殼結構之均ㄧ粒徑次微米球與其表面改質之特性研究★ 高效率染料敏化太陽能電池及製備次模組元件之研究
★ 利用核殼結構次微米球建構具耐溶劑性質及機械性質之光子晶體膜★ 利用次微米球建構具機械性質之光子晶體薄膜
★ 電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究★ 同時聚合下製備聚苯乙烯/矽膠高分子混成體
★ 甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究★ 含水溶性藥物之乙基纖維素微膠囊的製備
★ 銅箔基板環氧樹脂含浸液之研究★ 含光敏感單體之甲基丙烯酸酯系列正型光阻之製備
★ 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究★ 均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子
★ 溶膠-凝膠法製備環氧樹脂/二氧化矽有機無機混成體★ 溶膠-凝膠法製備相轉移材料微膠囊
★ 親疏水性光阻製備★ 奈米多孔性材料之製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究可經混合所合成之有機高分子溶液與無機溶膠,製備出透明且具疏水疏油之硬質膜。除了探討有機高分子溶液與無機溶膠之相容性,也探討高分子溶液與無機溶膠的組成對於有機無機膜之透明度、硬度、疏水、疏油性質的影響。有機高分子溶液是以甲基丙烯酸甲酯(MMA)為主要單體,搭配甲基丙烯酸(MAA)、3-(甲基丙烯酰氧)丙基三甲氧基矽烷(MPTMS)以及十三氟辛醇丙烯酸酯(PFHEA)行共聚合反應而得。無機溶膠以四乙氧基矽烷(TEOS)、甲基三甲氧基矽烷(MTMS)、MPTMS三種矽氧烷經溶膠凝膠程序而製得。
當使用IPA/MEK共溶劑下,可以製備出透明有機高分子溶液與無機溶膠,兩者經混合後塗布亦可得到透明之有機無機膜。
當有機高分子溶液為PMMA溶液時,使用MTMS/TEOS溶膠可提升有機無機膜之疏水性;若使用MPTMS/TEOS溶膠時,則可提升透光度以及硬度;而在使用MPTMS/MTMS溶膠時,可得透光度98%以上,硬度為6H,水之接觸角則為95度之有機無機膜。
當有機高分子溶液為P(MAA/MMA)溶液時,可提升有機無機膜之硬度,但只有在使用MPTMS/TEOS溶膠之條件下,可製備出透光度為100.4%,硬度為8H以及水之接觸角為63.3度之有機無機膜。
當有機高分子溶液為P(MPTMS/MMA)溶液時,可與MTMS/TEOS、MPTMS/TEOS溶膠製備透明之有機無機膜,特別是使用MTMS/TEOS溶膠時,可得透光度為99.5%,硬度為8H,水之接觸角達83.2度之有機無機膜。
當有機高分子溶液為P(PFHEA/MPTMS/MMA)溶液時,可與MTMS/TEOS、MPTMS/TEOS溶膠製備透明之有機無機膜,特別是使用MTMS/TEOS溶膠時,可得透光度為100.4%、硬度為8H、水與二碘甲烷之接觸角是107度以及72.6度之有機無機膜。
摘要(英) Thermo-curable nano-sized colloidal silica sol was synthesized and modified by coupling agents, methyl- trimethoxysilane (MTMS), and 3-(trimethoxysilyl)propyl methacrylate (MPTMS) in the presence of tetraethoxysilane (TEOS). These silica sols were prepared by keeping the molar ratio of silane monomers, solvent, water (H2O) (pH=1) constant at 1: 6: 4, respectively. On the other hand, PMMA modified solution was prepare by polymerization of methyl methacrylate (MMA) with methacrylic acid (MAA), MPTMS and perfluorohexylethyl acrylate (PFHEA). In order to improve the miscibility in silica sol and PMMA modified solution, isopropyl alcohol (IPA)/methyl ethyl ketone (MEK) (IPA:MEK=1:1) was chosen as the mixture solvent. The prepared polymer/silica films on PMMA substrates were characterized by UV-Vis spectroscopy, pencil hardness test, static water contact angle (WCA) and static diiodomethane contact angle (OCA) measurements. The effects of the composition of silane monomers, the ratio of silica sol to polymer modified solution, and the amount of MAA, MPTMS or PFHEA in polymer modified solution on the transparent, pencil hardness and hydrophobicity of prepared films were investigated. The results showed that with increasing the amount of MTMS and MPTMS in the sols, the hydrophobic and transparent properties were improved, respectively. On the other hands, with increasing MPTMS in the polymer solution, the transparent and hardness were improved. In addition, with increasing PFHEA in the polymer solution, the hydrophobic and oleophobic were improved.
The best result showed that relative light transmittance, pencil hardness, WCA and OCA of polymer/silica hybrid film on PMMA substrate were reached to 100.4%, 8H, 107。and 72.6。, respectively.
關鍵字(中) ★ 有機/無機複合塗膜
★ 溶膠-凝膠
關鍵字(英)
論文目次 目錄
主目錄 I
圖目錄 III
實驗流程圖 III
實驗圖 III
表目錄 VI
第一章 緒論 1
第二章 實驗方法 7
2.1 藥品 7
2.2 實驗儀器 9
2.3 高硬度疏水透明有機無機膜材料製備 10
2.3.1 PMMA溶液製備 10
2.3.2 TEOS溶膠之製備 11
2.3.3 於壓克力基材上製備PMMA/TEOS溶膠之有機無機膜 12
第三章 結果與討論 14
3.1 PMMA/TEOS有機無機混成塗膜的探討 15
3.1.1 PMMA溶液之製備 15
3.1.2 TEOS溶膠之製備 15
3.1.3 PMMA/TEOS有機無機膜的製備 16
3.2 PMMA溶液下製備疏水性質之有機無機硬質膜 20
3.3 P(MAA/MMA)溶液與溶膠混合塗布之影響 31
3.4 P(MPTMS/MMA)溶液與溶膠混合塗布之影響 50
3.5 P(PFHEA/MPTMS/MMA)溶液與溶膠混合塗布之影響 69
第四章 結論 83
文獻回顧 86
參考文獻 [1] H.-S. Chen, S.-H. Huang, T.-P. Perng, Surface and Coatings Technology. 2013, 233, 140.
[2] C.-J. Dai, H.-Y. Tsao, Y.-J. Lin, D.-S. Liu, Thin Solid Films. 2014, 552, 159.
[3] H. Ji, S. Wang, X. Yang, Polymer. 2009, 50, 133.
[4] R. J. R. Uhlhorn, K. Keizer, A. J. Burggraaf, J. Membrane Sci., 1992, 66, 271.
[5] K. Nakanishi, H. Minakuchi, N. Soga, J. Sol-Gel Sci. Technol., 1997, 8, 547.
[6] G.S. Sur, J. E. Mark, Eur. Polym. J., 1985, 21, 1051
[7] Y. Takahashi, A Maeda, K. Kojima, K. Uchida, Luminescence, 2000, 87, 767.
[8] S. H. Jang, M. G. Han, S. S. Im, Synth. Met., 2000, 17, 110.
[9] T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Polym. Degradation Stab., 2000, 69, 317
[10] M. Yoshida, P.N. Prasad, Appl. Opt., 1996, 35, 1500.
[11] A. Mehner, J. Dong, T. Prenzel, W. Datchary, D.A. Lucca, Journal of Sol-Gel Science and Technology. 2010, 54, 355.
[12] A.C. Pierre, A. Rigacci, SiO2 Aerogels. 2011, 21.
[13] P. Chaijareenont, H. Takahashi, N. Nishiyama, M. Arksornnukit, Dental Materials Journal. 2012, 31, 623.
[14] C.-C. Chang, T.-Y. Oyang, Y.-C. Chen, F.-H. Hwang, L.-P. Cheng, Journal of Coatings Technology and Research. 2013, 11, 381.
[15] H. Kozuka, K. Nakajima, H. Uchiyama, ACS applied materials & interfaces. 2013, 5, 8329.
[16] L. Sowntharya, S. Lavanya, G.R. Chandra, N.Y. Hebalkar, R. Subasri, Ceramics International. 2012, 38, 4221.
[17] T.J. Wood, L.J. Ward, J.P. Badyal, ACS applied materials & interfaces. 2013, 5, 9678.
[18] L.Y.L. Wu, L. Boon, Z. Chen, X.T. Zeng, Thin Solid Films. 2009, 517, 4850.
[19] 馬振基, “奈米材料科技原理及應用”, 全華科技圖書, 2003.
[20] C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Boston, 1990.
[21] S. J. Clarson, J. E. Mark, Polym. Commun., 1987, 28, 249
[22] H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Adv. Mater., 1999, 11, 435.
[23] M. Nogami, Y. Moriya, J. Non-Cryst. Solids, 1980, 37, 191.
[24] L.C. Klein, G. J. Garvey, J. Non-Cryst. Solids, 1980, 38, 39.
[25] S.P. Makherju, J. Non-Cryst. Solids, 1980, 42, 477.
[26] D. P. Partlow, B. E. Yoldas, J. Non-Cryst. Solids, 1981, 46, 153.
[27] B. E. Yoldas, J. Non-Cryst. Solids, 1982, 51, 105.
[28] Y. Paoting, L. Hsiaoming, W. Yuguang, J. Non-Cryst. Solids, 1982, 52, 511.
[29] E. J. A. Pope, J. D. Mackenzie, J. Non-Crystalline. Solids, 1986, 87, 185.
[30] T. W. Zerda, I. Artaki, J.Jonas, J. Non-Crystalline. Solids, 1986, 81, 365.
[31] B. Himmel, T. Gerber, H. Burger, J. Non-Crystalline. Solids, 1987, 91, 122.
[32] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 100, 250.
[33] Artaki, T. W. Zerda, J. Jonas, J. Non-Cryst. Solids, 1986, 81, 381.
[34] D. R. Ulruch, Ceramic Bull., 1985, 64, 1444.
[35] D. R. Uhlmann, T. Suratwala, K. Davidson, J. M. Boulton, G. Teowee, J. Non-Cryst. Solids, 1997, 218, 113.
[36] D. R. Uhlmann, G. P. Rajendran, SPIE Proc., 1990, 1328, 270
[37] B. E. Yoldas, J. Sol-Gel Sci. Technol., 1993, 1, 65.
[38] J. Y. Ying, C.P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. Engl., 1999, 38, 56.
[39] I. Corma, Chem. Rev., 1997, 97, 2373.
[40] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 1994, 368, 321.
[41] S. Krijnen, H. C. L. abbenhuis, R. W. J. Hansen, J. H. C. van Hooff, R. A. van Santen, Angew. Chem. Int. Ed. Engl., 1998, 37, 356.
[42] R. A. Assink, B. D. Kay, J. Non-Crystalline. Solids, 1988, 88, 359.
[43] R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
[44] L. S. Dent-Glasser, E. E. Lachowski, J. Chem. Soc. Dolton Trans. , 1980, 393, 399.
[45] C. J. Brinker, K. D. Keeffer, D. W. Schaefer, C. S. Ashley, J. Non-Crystalline. Solids, 1982, 48, 47.
[46] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci., 1986, 26, 62.
[47] S. Sakka, K. Kamiya, K. Makita, Y. Yamamoto, J. Non-Cryst. Solids, 1984, 63, 223.
[48] C. J. Brinker, K. D. Keefer, R. A. Assink, B. D. Kay, C. S. Ashley, J. Non-Cryst. Solids, 1984, 63, 45.
[49] G. Orcel, L. Hench, J. Non-Cryst. Solids, 1986, 79, 177.
[50] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 99, 118.
[51] T. Adachi, S. Sakka, M, Okada, Y. K. Shi, J. Non-Cryst. Solids, 1987, 95, 970.
[52] D. Goswami, S.K. Medda, G. De, ACS applied materials & interfaces. 2011, 3, 3440.
[53] W. Jiang, C.M. Grozea, Z. Shi, G. Liu, ACS applied materials & interfaces. 2014, 6, 2629.
[54] S.A. Kulinich, M. Farzaneh, Applied Surface Science. 2009, 255, 4056.
[55] S. Standeker, Z. Novak, Z. Knez, Journal of colloid and interface science. 2007, 310, 362.
[56] G. Wang, J. Yang, Q. Shi, Journal of Coatings Technology and Research. 2010, 8, 53.
[57] Y. Xiu, D.W. Hess, C.P. Wong, Journal of colloid and interface science. 2008, 326, 465.
[58] T. Young, Trans. R. Soc. London, 1805, 95, 65.
[59] D. A. Loy, K. J. Shea, Chem. Pev., 1995, 95, 1431.
[60] B. M. Novak, Adv. Mater., 1993, 5, 422.
[61] G. Philipp, H. Schmidt, J. Non-Cryst. Solids, 1984, 63, 283.
[62] W. Barthiott, C. Neinhuis, Planta. 1997, 1, 202.
[63] D. Goswami, S.K. Medda, G. De, ACS applied materials & interfaces. 2011, 3, 3440.
指導教授 陳暉(Hui Chen) 審核日期 2015-6-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明