博碩士論文 102324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.117.141.69
姓名 許佩婷(Pei-ting Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 維生素C對二氧化鈦溶膠之影響及其催化應用
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦是一種能將有害物質降解為水和二氧化碳的光觸媒之一。在本研究中以溶膠凝膠法製備二氧化鈦溶膠,其中以四氯化鈦為前驅物而過氧化氫作為塑解劑在95度高溫下將氫氧化鈦水溶液轉換成二氧化鈦溶膠。本研究之目的最主要著重於提高二氧化鈦溶膠之穩定性以及加強二氧化鈦在可見光範圍之光催化應用。加入維生素C溶液可形成電荷轉移之複合物,此有著特殊彎曲的Ti-O鍵會使二氧化鈦的光吸收度紅移至可見光區並可有效降低顆粒凝聚現象,達到系統的穩定性。本研究透過X光粉末繞射分析儀 (XRD)、雷射粒徑分析儀 (DLS)、超高真空場發射掃描式電子顯微鏡 (SEM)、穿透式電子顯微鏡 (TEM)、高解析掃描穿透式電子顯微鏡 (HRTEM)、傅立葉紅外線光譜儀 (FTIR)以及紫外光-可見光分光光度計 (UV-vis)來分析二氧化鈦溶膠和改質二氧化鈦溶膠。從XRD圖譜、選區繞射圖 (SAED)和HRTEM的晶格距離 (lattice distance)可得知樣品所對應二氧化鈦中之銳鈦礦相。而DLS和SEM呈現改質後二氧化鈦的粒徑較未改質二氧化鈦小,此外,DLS也可由ζ電位 (Zeta potential) 確認維生素C增強二氧化鈦溶膠的穩定性。維生素C-二氧化鈦溶膠所形成之Ti-O鍵可由FTIR來判定,其圖譜會出現所對應之波峰。本研究之維生素C-二氧化鈦溶膠的光降解活性使用亞甲基藍染料作為測試,經過UV-vis分析可得到:無論在紫外光或可見光的照射下,維生素C與二氧化鈦之莫爾比等於0.75比1 (AT3)的光催化效果最好。
摘要(英) Titanium dioxide, a kind of photocatalyst is one of the best ways to degrade harmful materials into H2O and CO2 and it has been studied by the researches. In this study, TiO2 sol was prepared by a sol-gel method using TiCl4 as precursor and H2O2 as peptizing agent in order to induce the formation of TiO2 nanoparticles that converted from Ti(OH)4 under 95 ℃. The objective of this study was to find a method to enhance the stability of the sol and improve the photocatalytic activity of TiO2 under visible light irradiation. Adding ascorbic acid solution into TiO2 sol would form a charge-transfer complex, leading to red shift TiO2 up to visible light region and decrease the agglomeration to attain the stable environment due to the formation of specific Ti-O band with large curvature. TiO2 and AA-modified TiO2 nanoparticles were characterized by XRD, DLS, SEM, TEM, HRTEM, FTIR, and UV-vis spectroscopy. XRD patterns, SAED, lattice distance of HRTEM confirm that all of samples were in anatase phase. While DLS and SEM presented that the particle size of AA-modified TiO2 was smaller than that of pure TiO2 and DLS also ensured that surface modifier would enhance the stability of TiO2 sol. The new binding of AA-modified TiO2, Ti-O-C was demonstrated by FTIR spectra. AT3 (the molar ratio of AA: TiO2= 0.75:1) showed high activity both under UV light and visible light irradiation for the photocatalytic degradation of methylene blue dye.
關鍵字(中) ★ 二氧化鈦
★ 維生素C
★ 表面改質劑
★ 電荷轉移複合物
★ 亞甲基藍之光催化降解
關鍵字(英) ★ titanium dioxide
★ ascorbic acid
★ surface modifier
★ charge-transfer complex
★ photocatalytic degradation of methlyene blue
論文目次 中文摘要 i
Abstract ii
Table of Contents iii
List of Figures vi
List of Tables ix
Chapter 1 Literature Review 1
1.1 Introduction 1
1.2 Heterogeneous Titanium dioxide photocatalyst 2
1.2.1 Properties of Titanium dioxide 3
1.2.2 Reaction mechanisms of Titanium dioxide 4
1.3 Modification of Titanium dioxide 7
1.3.1 Metal-doping 7
1.3.2 Coupling with metal oxides 8
1.3.3 Non-metal doping 9
1.3.4 Surface modification by polymers 10
1.4 Ascorbic acid-TiO2 as photocatalyst 11
1.4.1 Mechanism of Ascorbic acid addition in TiO2 13
2.5 Objective 15
Chapter 2 Experimental 17
2.1 Materials 17
2.2 Methodology 17
2.2.1 Synthesis of TiO2 and Ascorbic acid-modified TiO2 sols 17
2.2.2 Preparation of AA-modified TiO2 thin film on glass 18
2.3 Characterization 19
2.3.1 X-Ray Diffraction (XRD) 19
2.3.2 Dynamic Light Scattering (DLS) 22
2.3.3 Scanning Electron Microscopy (SEM) 22
2.3.4 Transmission Electron Microscopy (TEM) and High-resolution Electron Microscopy (HRTEM) 23
2.3.5 Fourier transform infrared spectroscopy 25
2.3.6 UV-visible spectrophotometer 25
2.4 Degradation of methylene blue 26
2.4.1 Photocatalytic activity under UV light irradiation 28
2.4.2 Photocatalytic activity under visible light irradiation 29
Chapter 3 Preparation of Ascorbic acid-modified Titanium Dioxide Thin Film, and its Application on Photocatalytic Degradation of Methlyene Blue 30
3.1 Results and discussion 30
3.1.1 Characteristics of TiO2 and AA-modified TiO2 sols 30
3.1.2 XRD 31
3.1.3 DLS 34
3.1.4 SEM 37
3.1.5 TEM and HRTEM 39
3.1.6 FTIR 44
3.1.7 The absorption spectra by UV-vis 48
3.1.8 Photocatalytic destruction of methylene blue under UV light irradiation 49
3.1.9 Photocatalytic destruction of methylene blue under visible light irradiation 53
Chapter 4 Conclusions 57
References 59

參考文獻 Asilturk, M., F. Sayilkan, E. Arpac, “Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation”, J. Photochem. Photobiol. A 203 (2009) 64-71.

Amalraj A, A. Pius, “Photocatalytic Degradation of Alizarin Red S and Bismarck Brown R Using TiO2Photocatalyst.”, J Chem. Appl. Biochem. 2014;1(1): 105.

Bossmann, S.H., S. Gob, T. Siegenthaler, A. M. Braun, K. T. Ranjit, I. Willner, “An N,N’-dialkyl-4,4’-bipyridinium-modified titanium-dioxide photocatalyst for water remediation – observation and application of supramolocular effects in photocatalytic degradation of π-donor organic compounds.” Fresenius J. Anal. Chem. ( 2001) 371: 621-628.

Chong M. N., B. Jin, C. Chow, C. Saint, “Recent development in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997-3027.

Daghrir, R., P. Drogui, and D. Robert, “Modified TiO2 For Environmental Photocatalytic Applications: A Review”, Ind. Eng. Chem. Res. 52 (2013) 3581-3599.

Fujishima A., X. Zhang, D. A. Tryk, “TiO2 photocatalysis and related surface phenomena”, Surface Science Reports 63 (2008) 515-582.

Grabowska, E., H. Remita, A. Zaleska, “Photocatalytic activity of TiO2 loaded with metal clusters”, Physicochem. Probl. Miner. Process. 45 (2010) 29-38.

Hoffmann A. A., S. L. P. Dias, J. R. Rodrigues, F. A. Pavan, E. V. Benvenutti, and E. C. Lima, “Methylene Blue Immobilized on Cellulose Acetate with Titanium Dioxide: an Application as Sensor for Ascorbic Acid.”, J. Braz. Chem. Soc., Vol. 19, No. 5, 943-949, 2008.

Ibhadon A. O., G. M. Greenway, Y. Yue, “Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation”, Catal. Comm. 9 (2008) 153–157.

Jaiswal, R., N. Patel, D.C. Kothari, and A. Miotello, “Improved visible light photocatalytic activity of TiO2 co-doped with Vanadium and Nitrogen”, Appl. Catal. B: Environ. 126 (2012) 47-54.

Kalyanasundaram K., M. Grätzel, E. Pelizzetti, “Interfacial electron transfer in colloidal metal and semiconductor dispersions and photodecomposition of water.”, Coord Chem Rev. 1986;69:57–125.

Łabuz P., R. Sadowski, G. Stochel, W. Macyk, “Visible light photoactive titanium dioxide aqueous colloids and coatings”, Chem. Eng. J. 230 (2013) 188–194.

Li X., P. Liua, Y. Maoa, M. Xing, J. Zhang, “Preparation of homogeneous nitrogen-doped mesoporous TiO2spheres with enhanced visible-light photocatalysis”, Appl. Catal. B: Environ. 164 (2015) 352–359.

Liu, Chao; X. Tang, C. Mo and Z. Qiang,. “Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium.” J. Solid State Chem. 2008, 181, 913-919.

Lui G., J. Y. Liao, A. Duan, Z. Zhang, M. Fowler, and A. Yu, “Graphene-Wrapped Hierarchical TiO2 Nanoflower Composite with Enhanced Photocatalytic Performance”, Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Macwan, D. P.; P. N. Dave and S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications.” J. Mater. Sci. 2011, 46, 3669-3686.

Mert E. H., Y. Yalçın, M. Kılıç, N. San, Z. Çınar, „Surface Modification of TiO2 with Ascorbic Acid for Heterogeneous Photocatalysis: Theory and Experiment”, J. Adv. Oxid. Technol. Vol. 11, No. 2, 2008.

Mills, Andrew and S. L. Hunte, “An overview of semiconductor photocatalysis.”, J. Photochem. Photobiol. A-Chem. 1997, 108, 1-35.

Mital, G. S.; T. Manoj, “A review of TiO2 nanoparticles.”, Phys. Chem. 2011, 56, 1639–1657.

Ou Y., J. D. Lin, H. M. Zou, D. W. Liao, “Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms.”, J. Mol. Catal. A: Chemical 241 (2005) 59–64.

Pelaez M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications“, Appl. Catal. B: Environ. 125 (2012) 331– 349.

Peng, Feng; L. Cai, Lei Huang, Hao Yu and H. Wang,. “Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method.” J. Phys. Chem. Solids, 2008, 69, 1657-1664.

Rajh T., J. M. Nedeljkovic, L. X. Chen, O. Poluektov, and M. C. Thurnauer, “Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C.”, J. Phys. Chem. B 1999, 103, 3515-3519.

Turkez H., “The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests.”, Experimental and Toxicologic Pathology 63 (2011) 453–457.

Umer A., S. Naveed, N. Ramzan, M. S. Rafique, M. Imran, “A green method for the synthesis of Copper Nanoparticles using L-ascorbic acid”, ISSN 1517-7076 artigo 11547, pp.197-203, 2014

Wisitsoraat A., A. Tuantranont, E. Comini, G. Sberveglieri, W. Wlodarski, “Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films”, Thin Solid Films 517 (2009) 2775–2780.

Xagas A. P., M. C. Bernard, A. H. Goff, N. Spyrellis, Z. Loizos, P. Falaras, “Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid”, J. Photochem.and Photobio. A: Chemistry 132 (2000) 115–120.

Xu, Y. H., C. Chen, X.L. Yang, X. Li, B.F. Wang, “Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes”, Appl. Surf. Sci. 255 (2009) 8624-8628.

Yang C., C. Gong, T. Peng, K. Deng, L. Zan, “High photocatalytic degradation activity of the polyvinyl chloride (PVC)–vitamin C (VC)–TiO2 nano-composite film.”, J. Hazardous Mater.178 (2010) 152–156.

Zhang J., Q. Xu, Z. Feng, M. Li, and Can Li, “Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2”, Angew. Chem. Int. Ed. 2008, 47, 1766 –1769.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2015-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明