博碩士論文 90226027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.58.40.171
姓名 黃冠凱(Kuan-Kai Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測器之製作與特性分析
(The study of AlGaN/GaN heterojunction metal-semiconductor-metal photodetector)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ P型氮化鎵歐姆接觸製作研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 1550 nm 直調式光纖有線電視長距離傳輸系統
★ 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析★ 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究
★ 氮化鎵藍色發光二極體透明電極之製作與研究★ 透明導電膜與氮化鎵接觸特性研究
★ 連續時間電流式濾波與振盪電路設計與合成★ 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光檢測器之研究
★ 陣列波導光柵波長多工器設計與分析★ 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究
★ 雙向混合DWDM系統架構在80-km LEAF上傳送CATV和OC-48信號★ N型氮化鎵MOS元件之製作與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文係利用有機金屬氣相沉積技術分別成長氮化鋁鎵/氮化鎵
異質接面蕭特基二極體結構試片和金屬-半導體-金屬光偵測器結
構試片,對試片製作蕭特基二極體,量測金屬與試片接觸的蕭特基位
障及理想因子,最後將蕭特基二極體的研究結果應用於金屬-半導體-
金屬光偵測器之製作,並量測元件暗電流及光頻譜響應度等特性。
論文中,在氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測
器的光頻譜響應度中看出異質接面有抑制光電子-電洞被電極吸收
的情形,為確定原因,試著將試片中的氮化鋁鎵披覆層利用光電化學
氧化方法去除,再製作成金屬-半導體-金屬光偵測器,分析具有披覆
層及無披覆層光偵測器特性之差異。
最後藉由量測於不同偏壓下之光頻譜響應度與霍爾量測結果,確
定在光響應度抑制及連續暗電流中的峰值為氮化鋁鎵/氮化鎵異質接
面能帶不連續,在氮化鎵側產生一位阱,並有一很高濃度的電子侷限
在小範圍的位阱內,稱為二維電子氣,所造成的結果。
關鍵字(中) ★ 光偵測器
★ 金屬-半導體-金屬
★ 異質接面
★ 氮化鋁鎵/氮化鎵
關鍵字(英) ★ heterojunction
★ AlGaN/GaN
★ photodetector
★ MSM
論文目次 II
目錄
第一章緒論………………………………………………………1
第二章原理………………………………………………………5
2.1 金屬-半導體接面理論…………………….….…………5
2.1.1 蕭特基接面理論…………………….……………………5
2.2 金屬-半導體-金屬光偵測器工作原理………......……...8
2.3 量測技術原理………………………….……………………9
2.3.1 暗電流與光電流之特性量測…………………………….9
第三章元件設計製作與量測結果……………………...……12
3.1 元件設計……………………………..…….………………12
3.1.1 磊晶結構………………………...…………………..13
3.2 元件製作……………………………..….…...……….….14
3.2.1 元件結構………………………………………….….14
3.2.2 蕭特基二極體元件製程………………….……….…….14
3.2.3 金屬-半導體-金屬光偵測器製程…………...…..16
3.3 量測與實驗結果……………………....…………………17
3.3.1 蕭特基二極體電流-電壓特性量測………….……18
3.3.2 金屬-半導體-金屬光偵測器電流-電壓特性量測.19
III
3.3.3 金屬-半導體-金屬元件暗電流衰減量測…….…21
3.4 利用光電化學氧化方法成長氧化層於光偵測器………24
第四章結論…………………………………………………26
參考文獻…………………..……………………………………28
圖………………………………………..………………………36
參考文獻 28
參考文獻
[1] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F.
Hochedez, “Assessment of GaN metal-semiconductor-metal
photodiodes for high-energy ultraviolet photodetection“, Appl. Phys.
Lett. Vol. 80, pp. 3198 (2000)
[2] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-
brightness InGaN/AlGaN double-heterostructure blue-light-emitting
diodes”, Appl. Phys. Lett. Vol. 64, pp. 1687 (1994)
[4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and
T.Mukai, “Superbright Green InGaN
Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J.
Appl. Phys. Vol. 34, pp. L1332 (1995)
[5] T. Mukai, D. Morita, and S. Nakamura, “High-power UV
InGaN/AlGaN double-heterostructure LEDs”, J. Cryst. Growth, Vol.
189/190, pp. 778 (1998)
[6] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-Based
29
Light-Emitting Diodes Operable at High Ambient Temperatures”,
Jpn. J. Appl. Phys. Vol. 37, pp. L479 (1998)
[7] M. S. Shur, “GaN Based Transistors for High Power Applications”,
Solid-State Electronics, Vol. 42, pp. 2131 (1998)
[8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal
semiconductor field effect transistor based on single crystal GaN”,
Appl. Phys. Lett. Vol. 62, pp. 1786 (1993)
[9] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm,
and M. S. Shur, “Microwave performance of a 0.25 µm gate AlGaN/
GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.
65, pp. 1121 (1994)
[10] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.
J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.
Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C
GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J.
Nitride Semicond. Res. Vol. 3, 41 (1998)
[11] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci.
Technol. Vol. 14, pp. R27 (1999)
[12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.
30
Bhattarai, “Schottky barrier photodetector based on Mg-doped
p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp. 2455 (1993)
[13] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.
Blasingame, L. F. Reitz, “High-responsivity photoconductive
ultraviolet sensors based on insulating single-crystal GaN epilayers”,
Appl. Phys. Lett. Vol. 60, pp. 2917 (1992)
[14] Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, D. K.
Wickenden, “Optical quenching of photoconductivity in GaN
photoconductors”, J. Appl. Phys. Vol. 82, pp. 2707 (1997)
[15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C.
Campell, “Comprehensive characterization of
metal-semiconductor-metal ultraviolet photodetectors fabricated on
single-crystal GaN”, J. Appl. Phys. Vol. 83, pp. 6148 (1998)
[16] Q. Chen, M. A. Khan, C. J. Sun, and J. W.Yang, “Visible-blind
ultraviolet photodetectors based on GaN p-n junctions”, Electron.
Lett. Vol. 31, pp. 1781 (1995)
[17] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja, B.
Beaumont, P. Gibart, J. A. Munoz, F. Cusso, “High-performance
GaN p-n junction photodetectors for solar ultraviolet applications”,
31
Semicond. Sei. Technol. Vol. 13, pp. 1042 (1998)
[18] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz, M.
Razeghi, “Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett.
Vol. 72, pp. 3303 (1998)
[19] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. San-chez, M.
Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”,
Appl. Phys. Lett. Vol. 74, pp. 1171 (1999)
[20] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J. A. Munoz,
“AlxGa1-xN: Si Schottky barrier photodiodes with fast response and
high detectivity”, Appl. Phys. Lett. Vol. 73, pp. 2146 (1998)
[21] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.
Diaz, M. Razeghi, “High-speed, low-noise
metal-semiconductor-metal ultraviolet photodetectors based on
GaN”, Appl. Phys. Lett. Vol. 74, pp. 762 (1999)
[22] E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of Bias on
the Responsivity of GaN Metal-Semiconductor-Metal Photodiodes”,
Phys. Stat. Sol. (a), Vol. 176, pp. 157 (1999)
[23] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa,
T. Jimbo, M. Umeno, “Back-Illuminated GaN
32
Metal-Semiconductor-Metal UV Photodetector with High Internal
Gain”, Jap. J. Appl. Phys. Vol. 40, pp. L505 (2001)
[24] C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi,
J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member, “GaN
metal-semiconductor-metal ultraviolet photodetectors with
transparent indium-tin-oxide Schottky contacts”, IEEE photon.
Technol. Lett. Vol. 13, pp. 848 (2001)
[25] H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell, C. T.
Foxon, “Fabrication and characterization of
metal-semiconductor-metal (MSM) ultraviolet photodetectors on
undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, Vol.
218, pp. 1 (2000)
[26] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts,
Clarendon Press. Oxford (1998)
[27] S. M. Sze, Semiconductor Device Physics and Technology, pp. 160
(1985)
[28] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278
(1985)
[29] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics,
33
“Current Transport in Metal-Semiconductor-Metal (MSM)
structures”, Vol. 14, pp. 1209 (1971)
[30] Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier
Photodiode”, Jap. J. Appl. Phys. Vol. 31, pp. 210 (1992)
[31] M. Klingenstein and J. Kuhi, J. Rosenzweig, C. Moglestus, A.
Hulsmann, Jo. Schneider and K. Kohler, “Photocurrent Gain
Mechanisms in Metal-Semiconductor-Metal Photodetectors”,
Solid-State Electronics, 37, 2, 333 (1994)
[32] O. Katz, V. garber, B. Meyler, G. Bahir, and J. Salzman, “Gain
mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett.
Vol. 79, pp. 1417 (2001)
[33] J. H. Burrought, “H-MESFET compatible GaAs/AlGaAs MSM
photodetector”, IEEE photon. Technol. Lett. Vol. 3, pp. 660 (1991)
[34] Subramaniam Arulkumran, Takashi Egawa, Guang-Yuan Zhao,
Hiroyasu Ishikawa, Takashi Jimbo and Masayoshi Umeno,
“Electrical Characteristics of Schottky Contacts on GaN and
Al0.11Ga0.89N”, Jap. J. Appl. Phys. Vol. 39, pp. L351 (2000)
[35] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin and H. X.
Jiang, ”Dependence of Ni/AlGaN Schottky barrier height on Al
34
mole fraction”, J. Appl. Phys. Vol. 87, pp. 801 (2000)
[36] S. Arulkumran, T. Egawa, H. Ishikawa, M. Umeno and T. Jimbo,
“Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky
diodes”, IEEE Trans. on Electron Devices, Vol. 48, pp. 573 (2001)
[37] Donald A. Neamen, Semiconductor Physics & Devices, 2nd, pp. 332
(2000)
[38] C. Monier, S. J. Pearton, P. C. Chang, A. G. Baca, and F. Ren,
“Performance Prediction for N-P-N AlxGa1-xN/GaN HBT”, IEEE
Trans. on Electron Devices, Vol. 48, No. 3, 597 (2001)
[39] Narihiko Maeda, Tadashi Saitoh, Kotaro Tsubaki, Toshio Nishida,
and Naoki Kobayashi, “Enhanced electron mobility in
AlGaN/GaN/AlGaN double-heterostructures by piezoelectric
effect”, Jpn. J. Appl. Phys. Vol. 38, pp. 799 (1999)
[40] B. Shen, T. Someya, O. Moriwaki and Y. Arakawa, “Effect of carrier
confinement on photoluminescence from modulation-doped
AlxGa1–xN/GaN heterostructures”, Appl. Phys. Lett. Vol. 76, pp. 679
(2000)
[41] N. Maeda, T. Nishda, N. Kobayashi, M. Tomizawa,
“Two-dimensional electron-gas density in AlGaN/GaN
heterostructure field-effect transistor”, Appl. Phys. Lett. Vol. 73, pp.
1856 (1998)
指導教授 李清庭(Ching-Ting Lee) 審核日期 2003-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明