參考文獻 |
28
參考文獻
[1] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Celle, J. F.
Hochedez, “Assessment of GaN metal-semiconductor-metal
photodiodes for high-energy ultraviolet photodetection“, Appl. Phys.
Lett. Vol. 80, pp. 3198 (2000)
[2] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer
[3] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-
brightness InGaN/AlGaN double-heterostructure blue-light-emitting
diodes”, Appl. Phys. Lett. Vol. 64, pp. 1687 (1994)
[4] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and
T.Mukai, “Superbright Green InGaN
Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J.
Appl. Phys. Vol. 34, pp. L1332 (1995)
[5] T. Mukai, D. Morita, and S. Nakamura, “High-power UV
InGaN/AlGaN double-heterostructure LEDs”, J. Cryst. Growth, Vol.
189/190, pp. 778 (1998)
[6] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-Based
29
Light-Emitting Diodes Operable at High Ambient Temperatures”,
Jpn. J. Appl. Phys. Vol. 37, pp. L479 (1998)
[7] M. S. Shur, “GaN Based Transistors for High Power Applications”,
Solid-State Electronics, Vol. 42, pp. 2131 (1998)
[8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal
semiconductor field effect transistor based on single crystal GaN”,
Appl. Phys. Lett. Vol. 62, pp. 1786 (1993)
[9] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm,
and M. S. Shur, “Microwave performance of a 0.25 µm gate AlGaN/
GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol.
65, pp. 1121 (1994)
[10] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J.
J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G.
Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C
GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J.
Nitride Semicond. Res. Vol. 3, 41 (1998)
[11] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci.
Technol. Vol. 14, pp. R27 (1999)
[12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R.
30
Bhattarai, “Schottky barrier photodetector based on Mg-doped
p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp. 2455 (1993)
[13] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M.
Blasingame, L. F. Reitz, “High-responsivity photoconductive
ultraviolet sensors based on insulating single-crystal GaN epilayers”,
Appl. Phys. Lett. Vol. 60, pp. 2917 (1992)
[14] Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen, D. K.
Wickenden, “Optical quenching of photoconductivity in GaN
photoconductors”, J. Appl. Phys. Vol. 82, pp. 2707 (1997)
[15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, J. C.
Campell, “Comprehensive characterization of
metal-semiconductor-metal ultraviolet photodetectors fabricated on
single-crystal GaN”, J. Appl. Phys. Vol. 83, pp. 6148 (1998)
[16] Q. Chen, M. A. Khan, C. J. Sun, and J. W.Yang, “Visible-blind
ultraviolet photodetectors based on GaN p-n junctions”, Electron.
Lett. Vol. 31, pp. 1781 (1995)
[17] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja, B.
Beaumont, P. Gibart, J. A. Munoz, F. Cusso, “High-performance
GaN p-n junction photodetectors for solar ultraviolet applications”,
31
Semicond. Sei. Technol. Vol. 13, pp. 1042 (1998)
[18] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz, M.
Razeghi, “Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett.
Vol. 72, pp. 3303 (1998)
[19] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. San-chez, M.
Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”,
Appl. Phys. Lett. Vol. 74, pp. 1171 (1999)
[20] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, J. A. Munoz,
“AlxGa1-xN: Si Schottky barrier photodiodes with fast response and
high detectivity”, Appl. Phys. Lett. Vol. 73, pp. 2146 (1998)
[21] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J.
Diaz, M. Razeghi, “High-speed, low-noise
metal-semiconductor-metal ultraviolet photodetectors based on
GaN”, Appl. Phys. Lett. Vol. 74, pp. 762 (1999)
[22] E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of Bias on
the Responsivity of GaN Metal-Semiconductor-Metal Photodiodes”,
Phys. Stat. Sol. (a), Vol. 176, pp. 157 (1999)
[23] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa,
T. Jimbo, M. Umeno, “Back-Illuminated GaN
32
Metal-Semiconductor-Metal UV Photodetector with High Internal
Gain”, Jap. J. Appl. Phys. Vol. 40, pp. L505 (2001)
[24] C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi,
J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member, “GaN
metal-semiconductor-metal ultraviolet photodetectors with
transparent indium-tin-oxide Schottky contacts”, IEEE photon.
Technol. Lett. Vol. 13, pp. 848 (2001)
[25] H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell, C. T.
Foxon, “Fabrication and characterization of
metal-semiconductor-metal (MSM) ultraviolet photodetectors on
undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, Vol.
218, pp. 1 (2000)
[26] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts,
Clarendon Press. Oxford (1998)
[27] S. M. Sze, Semiconductor Device Physics and Technology, pp. 160
(1985)
[28] S. M. Sze, Semiconductor Device Physics and Technology, pp. 278
(1985)
[29] M. Sze, D. J. Coleman, JR. and A. Loya, Solid-State Electronics,
33
“Current Transport in Metal-Semiconductor-Metal (MSM)
structures”, Vol. 14, pp. 1209 (1971)
[30] Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier
Photodiode”, Jap. J. Appl. Phys. Vol. 31, pp. 210 (1992)
[31] M. Klingenstein and J. Kuhi, J. Rosenzweig, C. Moglestus, A.
Hulsmann, Jo. Schneider and K. Kohler, “Photocurrent Gain
Mechanisms in Metal-Semiconductor-Metal Photodetectors”,
Solid-State Electronics, 37, 2, 333 (1994)
[32] O. Katz, V. garber, B. Meyler, G. Bahir, and J. Salzman, “Gain
mechanism in GaN Schottky ultraviolet detectors”, Appl. Phys. Lett.
Vol. 79, pp. 1417 (2001)
[33] J. H. Burrought, “H-MESFET compatible GaAs/AlGaAs MSM
photodetector”, IEEE photon. Technol. Lett. Vol. 3, pp. 660 (1991)
[34] Subramaniam Arulkumran, Takashi Egawa, Guang-Yuan Zhao,
Hiroyasu Ishikawa, Takashi Jimbo and Masayoshi Umeno,
“Electrical Characteristics of Schottky Contacts on GaN and
Al0.11Ga0.89N”, Jap. J. Appl. Phys. Vol. 39, pp. L351 (2000)
[35] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin and H. X.
Jiang, ”Dependence of Ni/AlGaN Schottky barrier height on Al
34
mole fraction”, J. Appl. Phys. Vol. 87, pp. 801 (2000)
[36] S. Arulkumran, T. Egawa, H. Ishikawa, M. Umeno and T. Jimbo,
“Effects of annealing on Ti, Pd, and Ni/n-Al0.11Ga0.89N Schottky
diodes”, IEEE Trans. on Electron Devices, Vol. 48, pp. 573 (2001)
[37] Donald A. Neamen, Semiconductor Physics & Devices, 2nd, pp. 332
(2000)
[38] C. Monier, S. J. Pearton, P. C. Chang, A. G. Baca, and F. Ren,
“Performance Prediction for N-P-N AlxGa1-xN/GaN HBT”, IEEE
Trans. on Electron Devices, Vol. 48, No. 3, 597 (2001)
[39] Narihiko Maeda, Tadashi Saitoh, Kotaro Tsubaki, Toshio Nishida,
and Naoki Kobayashi, “Enhanced electron mobility in
AlGaN/GaN/AlGaN double-heterostructures by piezoelectric
effect”, Jpn. J. Appl. Phys. Vol. 38, pp. 799 (1999)
[40] B. Shen, T. Someya, O. Moriwaki and Y. Arakawa, “Effect of carrier
confinement on photoluminescence from modulation-doped
AlxGa1–xN/GaN heterostructures”, Appl. Phys. Lett. Vol. 76, pp. 679
(2000)
[41] N. Maeda, T. Nishda, N. Kobayashi, M. Tomizawa,
“Two-dimensional electron-gas density in AlGaN/GaN
heterostructure field-effect transistor”, Appl. Phys. Lett. Vol. 73, pp.
1856 (1998) |