![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:17 、訪客IP:13.58.164.55
姓名 徐佳芸(Chia-yun Hsu) 查詢紙本館藏 畢業系所 數學系 論文名稱
(Circular Numerical Range of S_n-Matrices)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) $S_n$矩陣的數值域是一個圓盤,我們想知道第$k$層的數值域是否也是圓盤。我們讓$S_5$矩陣的特徵質屬於實數和數值域為圓盤。
如果$S_n$結合Blaschke product $B$,並且$B$等於$C$合成$D$,其中$C$的degree是2、$D$的degree是3。我們會得到$S_5$的第2層也會是圓,$S_5$的第3層會是單點。
$A$和$B$是2乘2矩陣,我們有$w(A+B)leq w(A)+w(B)$基本的不等式。我們對在等號成立時感到興趣。 然而我們得到等號成立時,$A$和$B$矩陣必須滿足一些充分必要條件。摘要(英) For an $S_n$-matrix with a circular disc as its numerical range, we want to know whether its rank-$k$ numerical range is also a circular disc. We show that, for an $S_5$-matrix $A$ with real spectrum and circular numerical range, if its associated Blaschke product $B$ has a normalized decomposition $B=Ccirc D$, with $C$ of degree 2 and $D$ of degree 3, then $Lambda_2(A)$ is also a circular disk and $Lambda_3(A)$ is singleton (cf. Theorem 3.3). For $A$ and $B$ be $2 imes2$ matrices, we have $w(A+B)le w(A)+w(B)$. We are interested in when it becomes
equality. We obtain a necessary and sufficient condition for $w(A+B)= w(A)+w(B)$ to hold (cf. Proposition 4.3).關鍵字(中) ★ 數值域
★ 數值域的半徑
★ Blaschke product關鍵字(英) ★ Numerical Range
★ Numerical Radius
★ Blaschke product論文目次 Contents
Abstract (inChinese) i
Abstract (inEnglish) ii
Contents iii
1 Introduction 1
2 Preliminaries 2
2.1 Numericalrangesandnumericalradii................2
2.2 Sn-matrices ..............................5
2.3 FiniteBlaschkeproducts.......................8
2.4 Higher-ranknumericalranges....................10
3 CircularNumericalRangesof Sn-matrices 14
4 NumericalRadiiofSumsofMatrices 19
References 31參考文獻 [1] M.D.ChoiandC.K.Li, Constrainedunitarydilationsandnumericalranges,
J. OperatorTheory46(2001),pp.435–447.
[2] M.D.Choi,D.W.Kribs,K.Yczkowski, Higher-ranknumericalrangesand
compressionproblems, LinearAlgebraAppl.,418(2006),828-839.
[3] M.D.Choi,M.Giesinger,J.A.HolbrookandD.W.Kribs, Geometryof
higher-ranknumericalranges, LinearandMultilinearAlgebra,56(2008),
53-64.
[4] M.D.Choi,J.A.Holbrook,D.W.KribsandK.Yczkowski, Higher-rank
numericalrangesofunitaryandnormalmatrices, OperatorsandMatrices,
1 (2008),409-426.
[5] U.Daeppa,P.Gorkina,A.Shafferb,B.SokolowskycandK.Vossa, Decom-
posingfiniteBlaschkeproducts, J.Math.Anal.Appl.,426(2015),1201-1216.
[6] H.-L.GauandP.Y.Wu, Numericalrangeof S(ϕ), LinearandMultilinear
Algebra, 45(1998),49-73.
[7] H.-L.GauandP.Y.Wu, Lucas’theoremrefined, LinearandMultilinear
Algebra, 45(1998),359-373.
[8] H.-L.GauandP.Y.Wu, Numericalrangecircumscribedbytwopolygons,
Linear AlgebraAppl.,382(2004),155-170.
[9] K.GustafsonandD.K.M.Rao, NumericalRange.TheFieldofValuesof
LinearOperatorsandMatrices, Springer,NewYork,1997.
[10] P.R.Halmos, A HilbertSpaceProblemBook, 2nded.,Springer,NewYork,
1982.
[11] R.A.HornandC.R.Johnson, TopicsinMatrixAnalysis, CambridgeUni-
versityPress,Cambridge,1991.
[12] C.K.LiandN.S.Sze, Canonicalforms,higher-ranknumericalranges,totally
isotropicsubspaces,andmatrixequations, Amer.Math.Soc.,136(2008),
3013-3023.
[13] C.K.Li,Y.T.PoonandN.S.Sze, Condition forthehigherranknumerical
rangetobenon-empty, LinearMultilinearAlgebra,2008,1-4,iFirst.
[14] B.Mirman, NumericalrangeandPonceletcurves, LinearAlgebraAppl.,
281(1998) 59-85.指導教授 高華隆(Hwa-Long Gau) 審核日期 2015-6-29 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare