姓名 |
許金福(Jin-Fu Hsu)
查詢紙本館藏 |
畢業系所 |
光電科學與工程學系 |
論文名稱 |
微米尺寸氮化銦鎵/氮化鎵發光二極體之製作與特性研究 (Fabrication and Characteristicsof Micron-Size InGaN/GaN LEDs)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
本論文是以氮化鎵(GaN) Ⅲ-Ⅴ族半導體為研究製作材料,主要
在探討分析發光二極體(Light Emitting Diode; LED)製作成不同微尺寸元件時發光效率與元件尺寸關係與探討各種微米尺寸元件之光電及物理特性變化,討論重點可分成元件設計製作及微尺寸發光二極體之光電特性分析兩大部份。
在元件設計製作上,利用黃光微影技術再配合離子佈植機將鎂離子(Mg+)植入於氮化鎵(GaN)材料中,以達到元件非發光區隔絕(isolation)及傳導電流侷限(current confinement)之效果,成功的完成不同尺寸的發光二極體元件,依照發光區域分別有20、15、10、7.5、5及3μm 等直徑。我們特別設計了寬度約12μm的電橋,如此不但可以提升在相同電壓下之電流注入(與S.X.Jin等人論文比較)且解決了一般微圓盤(Micro-disk)元件製作上的困難度。
1. 在比較不同尺寸元件的光電特性上,我們在量測電激發光(Electroluminescence ,EL)時發現在不同尺寸下的元件會有不同的藍移現象,3µm尺寸的Micron-Size元件藍移程度最大87.5meV,20µm最小52.9meV,藍移程度大小與尺寸似乎有相關連性,這個現象是紅移效應(熱效應)與藍移效應(由於注入載子產生的屏壁電場逐漸平衡GAN原有之內應力造成電場)兩者妥協之結果。在光強度量測方面我們的元件之量子效率10µm約為 比S.X.Jin等人論文中單顆最好元件12μm 量子效率 及9µm陣列元件 都要來的好,這個突破應可歸功於離子佈植作電流侷限之設計。 |
摘要(英) |
In this thesis, the physical phenomenon and characteristics of GaN light emitting diode (LED) with different Micron-Size active region were fabricated and analyzed. Devices design and the optoelectronic characteristics will be discussed.
For the devices design, we combine both photo lithography and ion implantation technique to fabricate various disk diameters (3, 5, 7.5, 10, 15, 20 μm) LEDs. The ion implantation technique was used for defined non-radiation region and confined the transport current. However, various micron-size LEDs was successfully fabricated using these two techniques and better current injection than KSU paper discussed at the same Voltage.
For the optoelectronic characteristics analysis, the disk diameter dependent blue shift of electro-luminescence (EL) spectra were observed. The smaller size 3µm LED resulted in bigger blue shift 87.5meV than 20µm 52.9meV under current density in range 200 to 15915 (A/cm2) this disk diameter dependent effect might be due to the competition between junction temperature and balanced quantum confined Stark effect (QCSD). The power density of LEDs radiation was measured by Integration Sphere and surface. The luminous intensity seems independent on the active dimension of micron-size LEDs. Our device 10μm size Quantum efficiency (Q.E.) is better than the S.X.Jin best device (12μm) Q.E. and array device 9μm Q.E. .This breakthrough might be contributed to the micron-size current confinement of Mg ion implanted. |
關鍵字(中) |
★ 微米尺寸 ★ 氮化銦鎵/氮化鎵 ★ 發光二極體 |
關鍵字(英) |
★ Micron-Size ★ InGaN/GaN ★ LED |
論文目次 |
摘 要 ………………………………………………… Ⅰ
英文摘要 ………………………………………………… Ⅲ
致 謝 ………………………………………………… Ⅴ
目 錄 ………………………………………………… Ⅵ
圖 目 ………………………………………………… Ⅷ
表 目 ………………………………………………… XI
第一章 導論 ……………………………………………… 1
第二章 微米尺寸發光二極體之基本原理
2-1 LED 發光機制 ……………………………………… 6
2-1-1直接發光與間接發光 ………………………… 6
2-1-2載子注入 ……………………………………… 7
2-2 離子佈植原理 ………………………………………10
2-2-1 離子佈植之高斯分佈 ……………………… 10
2-2-2 晶格脫序(disorder)………………………12
第三章 微米尺寸發光二極體製程與量測
3-1 元件之設計 …………………………………………16
3-1-1 氮化鎵LED磊晶結構 …………………………16
3-1-2 單顆元件結構設計……………………………17
3-2 微米尺寸發光二極體製程 …………………………18
3-2-1 發光區域20µm~3µm尺寸製作與離子佈值……18
3-2-2 乾式蝕刻區域製作……………………………21
3-2-3 P型透明電極導電層區域製作 ………………22
3-2-4 N型電極導電層及P型接觸平台區域製作……22
3-2-5 金屬鈍化層(Passivation)製作…………… 25
3-3 量測儀器介紹……………………………………… 26
3-3-1 電流電壓關係量測(I-V) ……………………26
3-3-2 電激發光量測(Electroluminescence,EL) 27
3-3-3 發光之光強(L-I)量測……………………… 27
第四章 實驗結果與討論
4-1 電流電壓量測……………………………………… 40
4-2 電激發光量測 ………………………………………41
4-3 發光強度量測 ………………………………………43
第五章結論與未來展望
5-1 結論………………………………………………… 57
5-2 未來展望 ……………………………………………58
參考文獻……………………………………………………59 |
參考文獻 |
[1]S.Nakamura et.J.Appl.Phys.76(12),pp.8189,1994
[2]X.Guo,E.F.Schubert,Appl.Phys.Lett.78,337,2001
[3]H.Kim,J.M.Lee,C.Huh,S.W.Kim,D.J.Kim,S.J.Park,H.Hwang,Appl.Phys.Lett.77,1903,2000.
[4]L.Linder et al.SPIE Pro. 4278,19,2001
[5]J.J.Wiere,D.A.Steigerwald,M.R.Krames,J.J.O’Shea,M.J.Ludowise,G.Christenson,Y.-C.Shen,C.Lowery,P.S.Martin,S.Subramanya,W.Götz,N.F.Gardner,R.S.Kern,and S.A.Stockman,Appl.phy.Lett.78,3379,2001.
[6]M.R.Krames,et al.SPIE processding,3938,2,2000.
[7]H.W.Choi,M.D.Dawson,P.R.Edwards,and R.W.Martin,Appl.Phy.Lett.83,4483,2003.
[8]H.W.Choi*,C.W.Jeon,and M.D.Dawson,phy.stat.sol.0,2185,2003.
[9]S.X.Jin,J.Li,Z.Li,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett,76,631,2000
[10] S.X.Jin,J.Li,Z.Li,J.Y.Lin,and H.X.Jiang,Appl.Phys.Lett,77,3236,2000.
[11] H.X.Jiang,S.X.Jin,J.Li,J.Shakya,and J.Y.Lin,Appl.Phys.Lett,78,1303,2001.
[12] H.W.Choi,C.W.Jeon,and M.D.Dawson,IEEE Photon.Tech.Lett.,15,510,2003.
[13]C.-W.Jeon*,H.W.Choi,and M.D.Dawson,phys.stat.sol.,200,78-82,2003
[14] S.X.Jin,J.Shakya,J.Y.Lin,and H.X.Jiang ,Appl.Phys.Lett,78,3532,2001
[15]H.Ishikawa et al.J.Appl.Phys.81,1315,1997.
[16]J.Rennie et al.J.Crystal Growth 189/190,711,1998.
[17] J.K. Ho, C.S. Jong, C. C. Chiu,J.Appl.Phys,86,4491,1999
[18]B.Zhang,T.Egawa,H.Ishikawa,Y.Liu,J.Appl.Phys,95,3170,2004
[19]L.Dai,B.Zhang,J.Y.Lin,H.X.Jiang J.Appl.Phys.,89,4951,2001
[20]H.W.Choi,C.W.Jeon,and M.D.Dawson,J.Appl.Phys.,93,5978,2003
[21]G.Martin,A.Botchkarev,A.Rockett,and H.Morkoc,Appl.Phys.Lett.68,2541,1996
[22]T.Takeuchi,S.Sota,M.Katsuragawa,M.Komori,H.Takeuchi,H.Amano,and I.Akasaki,Jpn.J.Appl.Phys.36,L382,1997
[23]C.M.Lueng,H.L.W.Chan,C.Surya,and C.L.Choy,J.Appl.Phys.88,5360,2000
[24] 顔璽軒,離子佈植技術應用於高亮度發光二極體之設計與製作,中華民國九十年六月,國立中央大學物理科學研究所碩士論文
[25] 丁逸聖,指叉型氮化鎵發光二極體之模擬與研究,中華民國九十二年一月,國立中央大學物理科學研究所碩士論文 |
指導教授 |
紀國鐘(Gou-Chung Chi)
|
審核日期 |
2005-1-20 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|