博碩士論文 90246005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.16.135.226
姓名 陳景宜(Jingyi Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 設計、製作與量測具二維掃描功能之微機電內視鏡頭
(Design, Fabrication and Testing of a Two-axis MEMS Scanner of OCT Endoscope)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 利用光展量概念之微型投影機光學設計方法與實作
★ 氮化銦鎵/氮化鎵多重量子井的激發光譜★ 鋅離子佈植摻雜氮化鎵薄膜特性研究
★ 中子質化氮化鎵材料之特性研究★ 砷化銦鎵的電性研究與平面型PIN光偵測器的製作
★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應
★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析
★ 離子佈植技術應用於高亮度發光二極體之設計與製作★ 光學鍍膜在藍綠光發光二極體上的應用
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文設計並展示了一個嶄新的二維透鏡掃描系統,以作為光學同調斷層術的內視鏡頭之用。基本上初始版本的掃描系統包含三個主要部份:橫向運動驅動器,縱向運動驅動器與收光耦合光纖。利用微機電製程技術,我們在SOI基板上製作梳狀結構作為驅動器的基本設計。之後,我們將兩顆相同的非球面玻璃透鏡置放於驅動器的框架上成為掃描透鏡組,以作為日後光學同調斷層術所需的循序掃描功能。在位移正負50 um的範圍內,掃描角度最大可達5度。而聚光光點最小可以達1.6 um,整個循序掃描的面積為150 um x 150 um。由此可得知,此系統具備相當良好的光學及機械特性。在未來可以廣泛應用於前視型光學同調斷層術之內視鏡頭。
摘要(英) In this thesis, a new two-axis lens scanning system as an optical coherence tomography endoscope is presented. Basically, the system consisted of three main parts in initial design: a lateral motion actuator, a vertical motion actuator and a collimator fiber. By using MEMS technology, the comb fingers structure on SOI wafer was took as a basic actuator. Then two same aspherical glass lenses were mounted on each frame of actuators as a pair for raster scanning in optical coherence tomography based endoscopic imaging. The maximum scanning angle is ± 5° at the lens displacement of ± 50 μm and the minimum beam spot size is 1.6 μm. The size of raster scanned image is 150 μm x 150 μm. The scanning characterization as well as the optical and mechanical designs of MEMS scanners is included. This new two-axis MEMS lens scanner is very functional for developing forward OCT imaging system capable of fitting in an endoscopic capsule.
關鍵字(中) ★ 光學同調斷層影像
★ 內視鏡
★ 微機電
★ 掃描探針
關鍵字(英) ★ Endoscope
★ MEMS
★ Sc
★ OCT
★ Optical Coherence Tomography
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
Chapter 1:Introduction to the thesis 1
1.1 Motivation 1
1.2 Scope of the thesis 4
Chapter 2:Optical Coherence Tomography 5
2.1 Introduction 5
2.2 Coherence 6
2.3 Interference 6
Chapter 3:MEMS Devices 11
3.1 Introduction 11
3.2 Scanning probe nanolithography 11
3.2.1 Surface micromachining 11
3.2.2 Scanning probe nanolithography 12
3.2.3 Simulation results 14
3.2.4 Fabrication Process 15
3.3 Variable Optical Attenuator 18
3.3.1 Introduction 18
3.3.2. Principle and chip fabrication 19
3.3.3 Experimental Results 20
3.3.4 Conclusion 20
Chapter 4:2D MEMS Lens Scanner for OCT endoscope 21
4.1 Introduction 21
4.2 Optical Design of 2D Lens Scanner 21
4.3 Mechanical Design of 2D Lens Scanner 22
Chapter 5:Fabrication, Integration and Package 24
5.1 Micoractuator fabrication 24
5.2 Lenses integration 25
5.3 Device package with a print circuit board 26
Chapter 6: Static and Dynamic Testing 27
6.1 Optical characterizations 27
6.2 Mechanical characterizations 28
Chapter 7: Discussion and Conclusion 30
Reference 44
Publication lists 47
參考文獻 [1]J. Fujimoto, W. Drexler, U. Morgner, F. Kartner, and E. Ippen, Optical Coherence Tomography: High Resolution Imaging Using Echoes of Light, Optics & Photonics News , pp. 25-31 (2000).
[2]R. C. Youngquist, S. Carr, and D. E. N. Davies. Optical coherence-domain reflecto- metry: A new optical evaluation technique. Opt. Lett., 12: pp. 158-160, (1987).
[3]K. Takada, I. Yokohama, K. Chida, and J. Noda. New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt., 26: pp. 1603-1606, (1987).
[4]A. F. Fercher, K. Mengedoht, and W. Werner. Eye-length measurement by interferometry with partially coherent-light. Opt. Lett., 13: pp. 186-188, (1988).
[5]C. K. Hitzenberger. Optical measurement of the axial eye length by laser Doppler interferometry. Inv. Ophthalmol. Vis. Sci., 32: pp. 616-624, (1991).
[6]D. Huang, J. P.Wang, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto. Micronresolution ranging of cornea anterior-chamber by optical reflectometry. Lasers Surg. Med., 11: pp. 419-425, (1991).
[7]D. Huang,E. A. Swanson, C.P. Lin, J. S. Schuman, W. G. Stinson,W. Chang, M. R.Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto. Optical coherence tomography. Science, 254: pp. 1178-1181, (1991).
[8]J. W. Goodman. Statistical Optics. J. Wiley & Sons, New York, (1985).
[9]J. M. Schmitt. Optical coherence tomography (OCT): A review. IEEE J. Select. Topics Quantum Electron., 5: pp. 1205-1215, (1999).
[10]U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:Sapphire laser. Opt. Lett., 24: pp. 411-413, (1999).
[11]W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto. In vivo ultrahigh resolution optical coherence tomography. Opt. Lett., 24: pp. 1221-1223, (1999).
[12]A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-Arunyawee, and J. A. Izatt. In vivo video rate optical coherence tomography. Opt. Express, 3: pp. 219-229, (1998).
[13]A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert. Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator. Opt. Lett., 15: pp. 326-328, (1990).
[14]K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes. 400-Hz mechanical scanning optical delay line. Opt. Lett., 18: pp.558-560, (1993).
[15]G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto. In vivo endoscopic optical biopsy with optical coherence tomography. Science, 276: pp. 2037-2039, (1997).
[16]G. J. Tearney, B. E. Bouma, and J. G. Fujimoto. High speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett., 22: pp. 1811-1813, (1997).
[17]M. E. Brezinski and J. G. Fujimoto. Optical coherence tomography: Highresolution imaging in nontransparent tissue. IEEE J. Select. Topics Quantum Electron., 5: pp. 1185-1192, (1999).
[18]J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2: pp 9-25, (2000).
[19]L. Pedrotti and L. S. Pedrotti, Introduction to Optics, Prentice-Hall International, Inc., 2nd. edition, (1996).
[20]E. Saff and A. Snider, Fundamentals of Complex Analysis for Mathematics, Science and Engineering, Prentice Hall, 2. edition edition, (1993)
[21]B. Saleh and M. Teich, Fundamentals of Photonics, JohnWiley & Sons, (1991)
[22]L. Thrane, Optical Coherence Tomography: Modelling and Applications, PhD thesis, (2000).
[23]R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White, Microsensors, IEEE Press, (1990).
[24]S.M. Sze, Semiconductor Sensors, Wiley, (1994).
[25]W.S. Trimmer, Micromechanics and MEMS, Classic and Seminal Papers to 1990, IEEE Press, (1996).
[26]J. Bryzek, K. Petersen, W. McCulley, IEEE Spectrum, pp. 20, (1994).
[27]R.T. Howe, J. Vac. Sci. Technol. B 6, pp. 1809, (1988).
[28]R.S. Muller, Sens. & Actuators A, pp. 21-23, (1990).
[29]K. Petersen, Proc. IEEE Electron Devices 70, pp.420, (1982).
[30]R.T. Howe, B.E. Boser, A.P. Pisano, Sens. Actuators A 56, pp. 167, (1996).
[31]Takahito Ono, et. al., Nanomechanics of Ultrathin Silicon Beams and Carbon Nanotubes, MEMS 2003 Conference, Kyoto, pp. 33-36, (2003).
[32]David Bullen, et al., Micromachined Arrayed Dip Pen Nanolithography Probes for Sub-100nm Direct Chemistry Patterning, MEMS 2003 Conference, Kyoto, pp. 4-7, (2003).
[33]V.M. Bright, et al, Design and performance of a double hot arm polysilicon thermal actuator, SPIE Micromachining and Microfabrication Conference, Austin, TX, pp. 296-306, (1997).
[34]P. Vettiger and G. K. Binnig, et. al, The“Millipede” - More than one thousand tips for future AFM data storage, IBM J. Res. Develop. Vol. 44 No. 3, (2000).
[35]H.-W. Lee, S.-Y. Wen, and W.-Z. Guo, Bi-directional differential actuator with two degree-of-freedom, to be presented in Conference on Lasers and Electro Optics, Pacific Rim, Taipei, Taiwan, (2003).
[36]Kenji Tokoro, D. Uchikawa, M. Shikida and K. Sato, Anisotropic Etching Properties of Silicon in KOH and TMAH solutions, International symposium on micromechatronics and human science, pp. 65-70, (1998).
[37]C. Marxer, P. Griss and N. F. de Rooij, A Variable Optical Attenuator Based o Silicon Micromachanics, IEEE Photonics Technology Letters, vol. 11, No. 2, pp. 233-235, (1999).
[38]C. H. Ji, Y. Yee, J. Choi, and J. U. Bu, Electromagnetic variable optical attenuator, IEEE/LEOS International Conference on Optical MEMS, pp. 49-50, (2002).
[39]Cornel Marxer, Boudewijn de Jong and Nico de Rooij, Comparison of MEMS Variable Optical Attenuator Designs, IEEE/LEOS International Conference on Optical MEMS, pp. 189-190, (2002).
[40]A. Bashir, P. Katila, N. Ogier, B. Saadany, D. A. Khalil, A MEMS-Based VOA with very low PDL, IEEE Photonics technology letters, vol. 16, no. 4, (2004).
[41]H.Toshiyoshi, K Isamoto, A. Morosawa, M.Tei and H.Fujita, A 5-Volt Operated MEMS Variable Optical Attenuator, TRANSDUCERS ‘03, pp. 1768-1771, (2003).
指導教授 紀國鐘(G. C. Chi) 審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明