博碩士論文 90246007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.109.244
姓名 詹德均(Der-Jun Jan)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以氧離子束輔助磁控濺鍍光學薄膜之研究
(DC magnetron sputtering of optical thin films in low energy ion beam)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在許多光學鍍膜方法中,磁控濺鍍具有低溫鍍膜的優點,最適合在塑膠基材上製鍍光學薄膜,然而因為低溫,薄膜不容易有好的光學性質。本研究結合磁控濺鍍與離子助鍍,將金屬膜的鍍膜區與以離子束轟擊形成氧化膜的氧化區分開,除了增加沉積原子的動能,還可以使濺鍍靶材維持在躍遷態,增加沉積速率,來改善反應磁控濺鍍的缺點。實驗首先針對Ta2O5與SiO2單層薄膜,進行磁控濺射與離子束氧化(Ion Beam Oxidation, IBO)製程,改變離子源電壓、電流、離子束氧分量和濺射功率等製程條件,以探討其與光學性質與沉積速率之關係,同時藉由氧離子束對壓克力基板作表面改質,增加膜層與基板的附著力。實驗結果顯示本研究方法較傳統磁控濺鍍法有較快的沉積速率與較好的光學特性,而四種製程條件必須相互配合,才能得最好的光學薄膜。並且在鍍膜前以氧離子束轟擊基板,可有效增加薄膜與基板間附著力。由這些實驗結果可知,這種結合磁控濺射和離子束氧化的鍍膜方法,可快速沉積高品質的薄膜,已成為未來低溫沉積高密度低損耗和穩定性高的光學薄膜最具潛力的方法。
摘要(英) Magnetron sputtering is a low temperature deposition process and suitable for use with polymer substrates. However, the films deposited by magnetron sputtering did not have perfect optical properties due to the low temperature process. In this study, we combined DC magnetron sputtering and ion assistance to deposit a thin metal film and then to oxidize this film with ion bombardment to form metal oxide in separate zones of the deposition chamber. The ion assistance increased the kinetic energy of the deposited atoms on the substrate, and the separation of deposition zone and oxidation zone kept the sputtering target in the transition mode. Both modifications improved the properties of optical thin films deposited by conventional reactive magnetron sputtering. The single layer of Ta2O5 and SiO2 was deposited by magnetron sputtering and ion-beam oxidation (IBO). The effects of ion energy, ion current, oxygen gas ratio in ion beam, and sputtering power on the optical properties and deposition rate were investigated. Moreover, the PMMA surface was modified by ion irradiation to increase the adhesion of the coatings on substrate. These results showed that IBO method may be one of promising methods to deposit the optical thin films with high packing density and high resistance to the harsh environment.
關鍵字(中) ★ 光學性質
★ 磁控濺射
★ 離子束
關鍵字(英) ★ Optical properties
★ Magnetron sputtering
★ Ion beam
論文目次 目 次
頁碼
摘要 i
致謝 ii
圖目錄 vi
表目錄 x
第一章 導論 1
1.1反應磁控濺射 5
1.2離子束氧化 8
1.3光學塑膠的特性 10
1.3.1常用光學塑膠的性質 11
1.4研究內容及目的 13
第二章 理論基礎 18
2.1反應磁控濺射模型 18
2.2離子束氧化過程 28
2.2.1電荷交換(Charge Exchange) 28
2.2.2原子碰撞(Atomic Collision) 29
2.2.3增強擴散(Enhanced Diffusivity) 30
2.2.4化學反應(Chemical Reaction) 32
2.3高分子材料的離子束表面改質 34
2.3.1氧電漿 35
2.3.2氧離子與高分子材料之交互作用 36
第三章 研究方法 39
3.1 End-Hall離子源 39
3.1.1電漿橋式中和器 41
3.2磁控濺射源 41
3.3系統架構與操作 42
3.4量測儀器 43
3.4.1 UV-VIS-NIR光譜儀 43
3.4.2反射光譜儀 44
3.4.3拉塞福回向散射分析儀(Rutherford Backscattering Spectrometer, RBS) 45
3.4.4 X-ray photoelectron spectroscopy (XPS) 45
3.4.5 Fourier Transform Infrared Spectroscopy (FTIR) 46
3.4.6 Atomic Force Microscope (AFM) 46
3.4.7輝光放電分光儀(Glow Discharge Spectrometer, GDS) 47
第四章 結果與討論 54
4.1 鍍製Ta2O5單層膜 54
4.1.1 Ta靶材的遲滯效應(Hysteresis Effect) 54
4.1.2 離子能量對薄膜性質的影響 55
4.1.3 離子電流對薄膜性質的影響 57
4.1.4 氧氣分量對薄膜性質的影響 59
4.1.5 濺射功率對薄膜性質的影響 60
4.1.6 RBS能譜 61
4.1.7 FTIR與XPS光譜 62
4.2 製鍍SiO2單層膜 73
4.2.1 Si靶材的遲滯效應(Hysteresis Effect) 73
4.2.2 離子能量對薄膜性質的影響 73
4.2.3 離子電流對薄膜性質的影響 75
4.2.4 氧氣分量對薄膜性質的影響 75
4.2.5 濺射功率對薄膜性質的影響 77
4.2.6 FTIR光譜 78
4.2.7 XPS光譜 79
4.2.8 AFM表面形貎 80
4.3 PMMA的離子束表面改質 92
第五章 結論 104
第六章 參考文獻 106
參考文獻 [1] A. Zoller, R. Gotzelmann, K. Matl, D. Cushing, Appl. Opt. 35 (1996) 5609.
[2] C.C. Lee and S.H. Chen, Vacuum 74 (2004) 577.
[3] D.T. Wei, Appl. Opt., 28 (1989) 2813.
[4] S. Chao, W.H. Wang, C.C.Lee, Appl. Opt. 40 (2001) 2177.
[5] F. Garbassi, M. Morra, E. Occhiello, “Polymer Surface : From Physics to Technology,”John Wiley & Sons, Chichester, 1994.
[6] U. Schulz, U. B. Schallenberg, and N. Kaiser: Appl. Opt. 41 (2002) 3107.
[7] J. Szczyrbowski, G. Brauer, G. Teschner, A. Zmelty, “Large-scale antireflective coatings on glass produced by reactive magnetron sputtering”, Surf. Coat. Technol., 98 (1998) 1460-1466.
[8] W.M. Posadowski, “Pulsed magnetron sputtering of reactive compounds”, Thin Solid Films, 343-344, (1999) 85-89.
[9] S. Chiba, A. Motok, K. Fujikura, and T. Hata, Vacuum 74 (2004) 449.
[10] Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, Vacuum 59 (2000) 755.
[11] J.P. Lehan, R. B. Sargent, and R. E. Klinger, J. Vac. Sci. Technol. A 10 (1992) 3401.
[12] I. Safi: Surf. Coat. Technol. 127 (2000) 203.
[13] J. Musil, P. Baroch, J. Vlček, K.H. Nam and J.G. Han, Thin Solid Films 475 (2005) 208.
[14] 艾啟峰,“活化反應磁控濺射沉積技術新發展”,工業材料,187,91年2月,101-109。
[15] S. Maniv, C.J. Miner, and W.D. Westwood, J. Vac. Sci. Technol. 18 (1981) 195.
[16] S. Schiller, U. Heisig, K. Steinfelder, J.Strumpfel, R. Voigt, R. Fendler, and G. Teschner, Thin Solid Films 96 (1982) 235.
[17] A.G. Spencer and R.P. Howson, Thin Solid Films 186 (1990) 129.
[18] S. Kadlec, J. Musil, and J. Vyskocyil, Hysteresis effect in reactive sputtering: a problem of system stability, J.Phys., D, Appl. Phys. 19 (1986) L187.
[19] S. Kadlec, J. Musil, J. Vyskocyil, Influence of pumping speed on the hysteresis effect in the reactive sputtering of thin films, Vacuum 37 (1987) 729.
[20] J. Musil, J. Vyskocyil, S. Kadlec, and V. Valvoda, New results in dc reactive magnetron deposition of TiNx films, Thin Solid Films 167(1988) 107.
[21] P.R. Lefebvre, C. Zhao, and E.A. Irene, Thin Solid Films 313-314 (1998) 454.
[22] N.A. Tabet, M.A. Salim, and A.L. Al-Oteibi, J. Electron Spectrosc. Rel. Phenom.101-103 (1999) 233.
[23] J.S. Williams, Mater. Sci. Eng. A 253 (1998) 8.
[24] D.C. Jacobs, Annu. Rev. Phys. Chem. 53 (2002) 379.
[25] W. Ensinger, Nucl. Instr. and Meth. B 127/128 (1997) 796.
[26] N. Herbots, P. Ye, X. Wang, and O. Vancauwenberghe: Low Energy Ion-Surface Interaction, ed. J. W. Rabalais (John Wiley & Sons, Chichester, England, 1994), Chap. 8, 389-480.
[27] 李正中編著,薄膜光學與鍍膜技術,第三版,藝軒圖書出版社,台北,2002。
[28] R. Flitsch, and D. Y. Shih, J. Adhes. Sci. Technol., 10 (1996) 1241.
[29] S. Berg and T. Nyberg, Thin Solid Films 476 (2005) 215.
[30] S. Berg, H.O. Blom, T. Larsson, and C. Nender, J. Vac. Sci. Technol., A, Vac.Surf.Films 5 (1987) 202.
[31] S. Berg, T. Larsson, C. Nender, and H.O. Blom, J. Appl. Phys. 63 (1988) 887.
[32] P.J. Martin, J. Mater. Sci. 21 (1986) 1.
[33] S. Mohan and M.G. Krishna, Vacuum 46 (1995) 645.
[34] 陳寶清編著,離子束材料改性原理與工藝,國防工業,北京,1995。
[35] H.R. Kaufman and R.S. Robinson, Operation of Broad-Beam Sources, Commonwealth Scientific Corporation, Alexandria, Virginia, 1984.
[36] H.R. Kaufman, J. Vac. Sci. Technol. A 4 (1986) 764.
[37] R.P. Howson, Nucl. Inst. Meth. B 121 (1997) 65.
[38] P.J. Martin, A. Bendavid, M. Swain, R.P. Netterfield, T.J. Kinder, W.G. Sainty, D. Drage, L. Wielunski, Thin Solid Films 239 (1994) 181.
[39] G.K. Hubler, in: D. C. Jacobson, D. E. Luzzi, T. F. Heinz, M. Iwaki (Eds.), Beam-Solid Interactions for Materials Synthesis and Processing, Boston, U.S.A., November 28-December 2, 1994, Material Research Society Symposium Proceeding 354 (1995) 45.
[40] D.M. Mattox, Surf. Coat. Technol. 133/134 (2000) 517.
[41] D.V. Morgan, R. P. Gittins, Phys. Stat. Sol. (a) 13, (1972) 517.
[42] J.A. Leavitt, L.C. McIntyre Jr., M.D. Asbaugh, B. Dezfouly-Arjomandy, J.G. Oder, Appl. Opt. 28 (1989) 2762.
[43] S. Petersson, G. Linker, O. Meyer, Phys. Stat. Sol. (a) 14 (1972) 605.
[44] L.R. Doolittle, Nucl. Inst. Meth. B 15 (1986) 227.
[45] W.W. Lee, D. Oblas, J. Vac. Sci. Technol. 7 (1970)129.
[46] T. Itoh, Ion Beam Assisted Film Growth, Elsevier, Amsterdam, 1989.
[47] J.A. Thornton, J. Vac. Sci. Technol. A 4 (1986) 3059.
[48] W. Ensinger, Nucl. Instr. and Meth. B 127/128 (1997) 796.
[49] 李裕鉅、洪子起譯,“薄膜量測技術”,真空科技,11卷,3、4期,87年12月,43-46。
[50] F. Krannig, 43rd Annual Technical SVC Conference Proceedings, 7-10 (Denver, 2000).
[51] H.K. Pulker and S. Schlichtherle, Proc. of SPIE Vol. 5250 (2004) 1.
[52] 楊錦章譯,「基礎濺鍍電漿」,電子發展月刊,68期,72年8月,13-40。
[53] G. Lucovsky, M. J. Manitini, J. K. Srivastava, and E. A. Irene, J. Vac. Sci. Technol. B 5 (1987) 530.
[54] F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B 37 (1988) 6468.
[55] T. T. Chau, S. R. Mejia, K. C. Kao, Mat. Res. Soc. Symp. Proc. 223 (1991) 69.
[56] Q. Tang, K. Kikuchi, S. Ogura, and A. Macleod, J. Vac. Sci. Technol. A 17 (1999) 1.
[57] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, and J. A. Yarmoff, Phys. Rev. B 38 (1988) 6084.
[58] H. R. Philipp, J. Non-Cryst. Solids, 8-10 (1972) 627.
[59] I. T. Koponen, Nucl. Instr. And Meth. In Phys. Res. B 171 (2000) 314.
[60] E. Kay and S. M. Rossnagel: Handbook of Ion Beam Processing Technology, ed. J. J. Cuomo, S. M. Rossnagel, and H. R. Kaufman (Noyes, Ridge, NJ, 1989), Chap. 10, p. 180.
[61] P. Groning, O.M. Kuttel, M. Collaud-Coen, G. Dietler, L. Schlapbach, Appl. Surf. Sci. 89 (1995) 83.
[62] T.G. Vargo and J.A. Gardella, Jr., J. Polym. Sci. A Poly. Chem. 27 (1989) 1267.
[63] D. Poitras and L. Martinu, Appl. Opt. 39 (2000) 1168.
[64] A. Bergeron, J.E. Klemberg-Sapieha, and L. Martinu, J. Vac. Sci. Technol. A 16 (1998) 3227.
[65] A. Bergeron, D. Poitras, and L. Martinu, Opt. Eng. 39 (2000) 825.
[66] J.E. Klemberg-Sapieha, D. Poitras, L. Martinu, N.L.S. Yamasaki, and C.W. Lantman, J. Vac. Sci. Technol. A 15 (1997) 985.
[67] Q. Zhang, S.F. Yoon, Rusli, J. Ahn H. Yang, D. Bahr, J. Appl. Phys. 84 (1998) 5538.
[68] M. Montecchi, R.M. Montereali, E. Nichelatti, Thin Solid Films 396 (2001) 262.
[69] T. K. Minton, J. Zhang, D. J. Garton, and J. W. Seale, High Perform. Polym. 12 (2000) 27.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2005-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明