參考文獻 |
1. Donald, G. Baker: Monomode Fiber Design. Van Nostrand Reinhold, New York, (1987)
2. Gloge, D.,Marcatili and E. A. “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. ,52, pp. 1563-1578 (1973)
3. Green, Paul E. Jr, “Fiber optics Networks,” Prentice-Hall, pp. 260, (1993)
4. H. Nishihara, M. Haruna and T. Suhara, “Optical integrated circuits”, McGraw-Hill, New York (19887)
5. S. Sheard, T. Suhara and H. Nishihara, “Integrated-optical temperature sensor,” Appl. Phys. Lett., 41, pp.134-136 (1982)
6. E. Griese, D. Krabe, E. Strake,“Electrical-optical printed circuit boards:Technology-design-modelling,” in interconnects in VLSI design, H. Grabinski(ed), Kluwer Publisher, Boston, pp.420 (2000)
7. E. Griese, “A high-performance hybrid electrocal-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Package, 24, pp. 375-383 (2001)
8. E. Yablonovitch,“Inhibited spontaneous emission in solid state physics and electronics”, Phys. Rev. Lett., 58, pp.2059-2062 (1987)
9. S. John, “Strong localization of photons in certain disordered dielectric superlattics,” Phys. Rev. Lett., 58, pp.2486-2488 (1987)
10. K. Yoshino, Y.Shimoda, Y. Kawagishu, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal.” Appl. Phys. Lett., 75, pp.932-934 (1999)
11. J. G. Fleming and Shawn-Yu Lin, “Three-dimensional photonic crystal with a stop band f rom 1.35 to 1.95 ?m” Opt. Lett., 24, pp.49-51 (1999)
12. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer and T. P. Pearsall, “Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.” Appl. Phys. Lett., 77, pp. 1973-1975 (2000).
13. R. K. Lee, O. J. Painter, B. Kitzke, A. Scherer and A. Yariv, “Photonic band gap defect lasers,” Electron. Lett., 35, pp. 569-570 (1999)
14. J. K. Hwang, H. Y. Rue, D. S. Song, I, Y. Han, H. K. Park, D. H. Jang and Y. H. Lee, “Continuous room-temperature operation of optically pumped two-dimensional photonic crystal laser at 1.6 ?m,” IEEE Photon. Technol. Lett. 12, pp. 1295-1297 (2000)
15. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, S. Schultz,“Microwave propagation in two-dimensional dielectric lattices,” Phys. Rev. Lett., 67, pp. 2017-2019 (1991)
16. J. S. Jensen, O. Sigmund, L. H. and M. Kristensen, “Topology Design and Fabrication of an Efficient Double 90(degree) Photonic Crystal Waveguide Bend,” IEEE, Photon. Tech. Lett., 17, pp. 1202-1204 (2005)
17. S. Kim and G. P. Nordin, J. Jiang and J. Cai, “High Efficiency 90(degree) Silica Waveguide Bend Using an Air Hole Photonic Crystal Region,” IEEE, Photon. Tech. Lett., 16, pp. 1846-1848 (2005)
18. C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, Ch. K Lin, W. Y Chiu, and Yi-Jen Chan,“Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express, 13, pp. 38-43, (2005)
19. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity”J. Opt. Soc. Am. B, 19, pp.2052-2059(2002)
20. J. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator, ” Opt. Lett., 24, pp. 847-849 (1999)
21. A. Yariv, P. Yeh, “Optical waves in crystals,” Wiley, New York, Chap. 6 (1984)
22. L. I. Epstein, “The design of optical filters,” J. Opt. Soc. Am. 42, pp806-810 (1952)
23. A. V. Tikhonravov, P. W. Baumeister and K. V. Popov,“Phase properties of multilayers,” Appl. Opt. 36, pp. 4382-4388 (1997)
24. A. F. Turner and P. W. Baumeister, “Multilayer mirrors with high reflectance over an extended spectral region,” Appl. Opt. 2 pp.247-254 (1966)
25. J. T. Cox, “Special type of double-layer antireflection coefficient for infrared optical materials with high refractive index,” J. Opt. Soc. Am. 51, pp1406-1408 (1961)
26. R. W. Staley and K. L. Andrew, “Use of dielectric coating in absolute wavelength measurements with a Fabry-Perot interferometer,” J. Opt. Soc. Am. 54, pp. 625-627 (1964)
27. S. Ajith Kumar, C. L. Nagendra and G. K. M. Thutupalli, “Near-infrared bandpass filters from Si/SiO2 multilayer coating.” Opt. Eng., 38, pp. 368-380 (1999)
28. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas., “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998)
29. Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett., 82, pp. 2770-2772 (2003).
30. H. Y. Lee, H. Makino, T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett., 81, pp. 4502-4504 (2002)
31. M. Alexe and U. Gosele, “Wafer Bonding- Applicationand and Technology,” 1st ed. Berlin, Germany: Springer-Verlag, pp. 13-51 (2004)
32. U. Gosele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad and K. Scheerschimidt, “Self-propagating room-temperature silicon wafer bonding in ultrahigh vacuum,” Appl. Phys. Lett., 67, pp. 3614-3616 (1995)
33. Q. Y. Tong, E. Schmidt,U. Gosele and M. Reiche, “Hydrophobic silicon wafer bonding” Appl. Phys. Lett., 64, pp. 625-627 (1994)
34. Thomas R. Anthony, “Dielectric isolation of silicon by anodic bonding,” J. Appl. Phys., 58, pp. 1240-1247 (1985)
35. J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett. 48, pp. 78-80 (1986)
36. A. R. Mirza and A. A. Ayon, “The success of MEMS manufacturing depends on silicon wafer -bonding techniques and the evolution of new bond-specific equipment” Solid State Technol., 42, pp. 73-80 (1998).
37. B. Waidhas, M. Boettcher and E. Meusel, “3D packageing technologies for Microsystems,” in Microsystem technology 96, VDE-Verlag, Potsdam pp. 349-356 (1996)
38. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers” Bell Syst. Tech. J. 43, pp. 1783-1809 (1964)
39. E. Garmire, T. McMahon and M. Bass, “Propagation of infrared light in flexible hollow waveguide,” Appl. Opt. Vol. 15, pp. 145-150 (1976)
40. P. Yeh, A. Yariv and E. Marom, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am., 68, pp.1196-1202 (1978)
41. N. J. Doran and K. J. Bulow, “Cylindrical Bragg fibers: A design and feasibility study for optical communications” J. Lightwave Technol., LT-1, pp. 588 (1983)
42. C. M. de sterke and I. M. Bassett, “Differential losses in Bragg fibers,” J. Appl. Phys., 76, pp. 680-682 (1994)
43. V. K. Kiseliov and T. M. Kushta,“A Spherical Scatterer Inside a Circular Hollow Dielectric Waveguide,” International J. Infrared and Millimeter Wave,18, pp. 151-154 (1997)
44. T. Miura, F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” Jpn. J. Appl. Phys., 43, pp. L21-L23 (2004)
45. A. B. Fedotov, A. N. Naumov, D. A. Sidorov-Biryukov, N. V. Chigarev, A. M. Zheltikov, J. W. Haus, R. B. Miles, “Photonic-bandgap planar hollow waveguide,” J. Opt. Soc. Am. B ,19, pp.1162-1168 (2002).
46. Nibbering, E. T. J.,Duhr, O. and Kom. G. “Generation of intense tunable 20-fs pulses near 400 nm by use of a gas-filled hollow waveguide.” Opt. Lett., 22, pp.1335-1337 (1997).
47. Tempea, Gabriel, Brabec and Thomas, “Theory of self-focusing in hollow waveguide,” Opt. Lett., 23, pp.762-764 (1998)
48. Jenkins, Devereux and Blockey,“Hollow waveguide integrated optics: A novel approach to 10mm laser radar,” J. Modern Opt., 45, pp. 1613-1628(1998)
49. Karasawa Noaki, Morita Ryuji, Xu Lin, Shigekawa Hidemi and Yamashita Mikio, “Theory of ultrabroadband optical pluse generation by induced phase modulation in a gas-filled hollow waveguide,” J. Opt. Soc. Am. B, 16 pp. 662-668(1999)
50. Zheltikv, Koroteev and Naumov,“Self-and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide.” J. Exp. and Theoretical Phys., 88, pp. 857-856 (1999)
51. Jyisy Yang, jhy-Woei Her, Sheng-His Chen,“Development of an Infrared hollow waveguide as a Sensing Device for Detection of Organic Compounds in Aqueous Solution.” Analytical Chemistry-Columbus, 71, pp. 3740-3746 (1999)
52. Shunichi Sato, Hiroshi Ashida, Tsunenori Arai, Yi-Wei Shi, Matsuura Yuji and Mitsunbu Miyagi, “Vacuum cored hollow waveguide for transmission of high-energy, nanosecond Nd:YAG Laser pulses and its application to biological tissue ablation.” Opt. Lett., 25, pp. 49-51(2000)
53. Naoki Karasawa, Ryuji Morita, Hidemi Shigekawa and Mikio Yamashita, “Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled single-mode hollow waveguide.” Opt. Lett., 25, pp. 183-185 (2000)
54. D. Homoelle and Alexander L. Gaeta, “Nonlinear propagation dynamics of ultrashort pulse in a hollow waveguide.” Opt. Lett., 25, pp. 761-763 (2000)
55. Jyisy Yang and Chin-Peng Tsui,“Detection of Chlorinated aromatic amines in aqueous solution based on an infrared hollow waveguide sampler.” Analysicta Chimica Acta, 442, pp. 267-276 (2001)
56. Naohi Karasawa, Ryuji Morita, Hidemi Shigekawa and Yamashita Mikio,“Characteristics of the oscillatory spectrum due to only induced-phase modulation in an argon filled hollow waveguide accompanied with intense self-phase modulation.” Opt. Commun., 197, pp. 475-480 (2001)
57. Jyisy Yang and Chung-Jay Lee, “Development of the Infrared hollow waveguide sampler for the detection of Chlorophenols in Aqueous solution.” IEEE Transaction on Visulization and computer Graphics 8, pp. 163-172(2002)
58. D. Homelle, Alexander L. Gaeta, V. Yanovsky and G. Mourou, “Pulse constrat enhancement of high-energy pulses by use of a gas-filled hollow waveguide.” Opt. Lett., 27, pp. 1646-1648 (2002)
59. Toru Miura, Fumio Koyama, Akihiro Matsutani and Takahiro Sakaguchi,“Novel variable optical attenuator based on three-dimensional hollow waveguide.” Jpn. J. Appl. Phys., 42, pp. 3477-3478 (2003)
60. A. Bendada, A. Derdouri, M. Lamontagne and Y. Simard, “Investigation of thermal contact resistance in injection molding using a hollow waveguide pyrometer and a two thermocouple probe.” Rev. Sci. Instruments, 74, pp. 5282-5288 (2003)
61. C. Charlton, F. Melas, A. Inberg, N. Croitoru and B. Mizaikoff,“ Hollow waveguide gas sensing with room temperature quantum cascade lasers,” IEE Proceeding-optoelectronic, 150, pp. 306-309 (2003)
62. Chengbin Jin, Xiujian Zhao, Haizheng Tao, Xina Wang and Aiyun Liu,“Study of the synthesis of SiO2-TiO2-GeO2 gel glass for hollow waveguide application in CO2 laser delivery.” J. Mater. Chem., 13, pp. 3066-3071 (2003)
63. Gibson, J. Daniel James A Harrington, “Extrusion of hollow waveguide performs with a one-dimensional photonic band gap structure.” J. Appl. Phys. 95, 3895-3900 (2004)
64. Sakurai, Yasuki, Koyama and Fumio,“Proposal of tunabl hollow waveguide distributed Bragg reflectors.” Jpn. J. Appl. Phys., 43, pp. L631(2004)
65. Helena Jelinkova, Michal Nemec, Jan Sulc, Pavel Cerny, Mitsunobu Miyagi and Yuji Matsuura, “Hollow waveguide delivery systems for laser technological application,” Progress in Quan. Electron., 28, pp. 145-164 (2004)
66. Yasuki Sakurai, Toru Miura and Fumio Koyama,“Air core Thickness dependence of propagation loss of slab hollow waveguide.” Jpn. J. Appl. Phys., 43, pp. L1091 (2004)
67. Sakurai, Yasuki, Koyama, Matsutani Akihiro and Fumio, “Tunable hollow waveguide Bragg grating with low-temperature dependence.” Appl. Phys. Lett. 86, pp. 71111-71113 (2005)
68. S. Campopiano, R. Bernini, L. Zeni, P. M. Sarro, “Microfluidic sensor based based on integrated optical hollow waveguide,” Opt. Lett., 29, pp. 1894-1896 (2004)
69. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature, 420, pp. 650-653 (1997).
70. Hyun-Yong Lee, Sung-June Cho, Gi-Yeon Nam, Wook-Hyun Lee, Takeshi Baba, Hsiao Makino and Takafumi Yao, “Multiple-wavelength-transmission filters based on Si-SiO2 one-dimensional photonic crystals.” J. Appl. Phys., 100, pp. 103111-103113 (2005)
71. C. C. Chen, P. G. Luan, J. Y. Chang, H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003, 2 , pp. 610-615 (2003)
72. R. De L. Kronig and W. G. Penney, Proc. Roy. Cos. (London) 139, pp. 499-508 (1931)
73. A. Yariv and P. Yeh, “Optical Waves in Crystals.” Wiley, New York pp. 171-172 (1984)
74. F. Abeles, J. Phys. (France) 11, pp. 310 (1950)
75. R. E. Collin, “Field theory of guided waveguides,” pp. 181-184, (1991)
76. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expression,” IEEE J. Quan. Electron., 28, 1689-1700 (1992)
77. W. Huang, R. M. Shubair, A. Nathan, and Y. L. Chow, “The modal characteristics of ARROW structure,” J. Lightwave Technol., 10, 1015-1022 (1992)
78. D. Marcuse, “Theory of dielectric optical waveguide,” 2nd ed., San Diego: Academic Press, pp. 49 (1999)
79. M. H. Sheng and H. W. Cheng, “Accurate first-order leaky-wave analysis of antiresonant reflecting optical waveguides,” Appl. Opt.,44, pp.751-763 (2005)
80. C. Kevin, S. Andrew, H. W. Laun, D. Lin and L. Kimerling, “SiO2/ TiO2 omnidirectional reflector and microcavity resonator via the sol-gel method,” Appl. Phys. Lett., 75, pp.3805-3807 (1999)
81. D.N. Chigrin, A. V. Lavrienko, D. A. Yarotsky and S. V. Gaponenko, “Observation of total omni-directional reflector from a one-dimensional dielectric lattice,” Appl. Phys. A, 68, pp. 25-28 (1999)
82. B. Temelkuran, E. L. Thomas, J. D. Jonnopoulos and Y. Fink,“Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity,” Opt. Lett., 26, pp. 1370-1372 (2001)
83. R. Syms and J. Cozens, “Optical Guided Waves and Device,” Mc Graw, Hill, (1992)
84. J. P. Berenger, “A perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., 114, pp.185-187 (1994)
85. M. Madou, “Fundamentals of Microfabrication,” CRC Press, Boca Raton, London, New York, Washington D.C., (1997)
86. E. Elwenspoek, H. Jansen, “Silicon micromaching,” Cambridge University Press, (1998)
87. W. Mens, J. Mohr and O. Paul, “ Microsystem Technology,” Wiley-Vch Verlag GmbH, pp. 146 (2001)
88. C. Gui, R. E. Oosterbroek and J. W. Berenschot, “Selective wafer bonding by surface roughness control,” J. Electochem. Soc., 148, pp.G225-G228 (2001)
89. Q.Y. Tong, Q. Gan, G. Hudson and G. Fountain, “Low-temperature hydrophobic silicon wafer bonding,” Appl. Phys. Lett., 83, pp.4767-4769 (2003)
90. Q. Y. Tong, E. Schmidt and U. Gosele, “Hydrophobic silicon wafer bonding,” Appl. Phys. Lett., 64, pp. 625-627 (2003)
91. S. S. Lo, H. K. Chiu, C. C. Chen, S. C. Hsu and C. Y. Liu,“Fabricating low-loss hollow optical waveguides via amorphous silicon bonding using dilute KOH solvent,” IEEE, Photonic Technol. Lett., 12,
92. H. Seidel, L. Cseppregi, A. Heuberger and H. Baummgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions.”J. Electrochem. Soc., 137, pp.3612-3620 (1990)
93. H. Seidel, L. Cseppregi, A. Heuberger and H. Baummgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions.” J. Electrochem. Soc., 137, pp.3626-3633 (1990)
94. E. Schwidefsky, “Increase of refractive index of silicon films by dangling bonds,” Thin Solid Films, 18, pp. 45 (1973)
95. G. K. M. Thutupalli and S. G. Tomlin, “The optical properties of amorphous and crystalline silicon,” J. Phys. C, 10, pp.467-470 (1997)
96. J. Stone and L. W. Stulz, “Reflectance, transmittance and loss spectra of multilayer Si/SiO2 thin film mirrors and antireflection coatings,” Appl. Opt., 29, pp. 583-588(1990)
97. M. Patrini, M. Galli, M. Belotti, L.C. Andreani, G. Guizzetti, G. Pucker. A. Lui. P. Bellutti, L. Pavesi. Optical response of one-dimensional (Si/SiO2)m photonic crystals. J Appl. Phys., 92, pp. 1816-1820 (2002).
98. R. G. Hunsperger, A. Yariv, A. Lee, “Parallel end-butt coupling for optical integrated circuits,” Appl. Opt., 16, pp. 1026- (1977)
99. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE, J. Quan. Electron., 9 , pp. 919-934 (1973)
100. T. Tamir,“Beam and Waveguide Couplers in Integrated Optics,” 2nd. Topic Appl. Phys., 7, pp. 102-107 (1979)
101. T. Aoyagi, Y. Aoyagi, S. Namba, “High-efficiency blazed grating couplers” Appl. Phys. Lett., 29, pp. 303-305 (1976)
102. M. Shams, D. Botes, S. Wang, “Preferential chemical etching of blazed grating in (110)-oriented GaAs” Opt. Lett., 4, pp. 96-98 (1979)
103. A. Gruss, K. T. Tam, T. Tamir, “Blazed dielectric gratings with high beam-coupling efficiencies,” Appl. Phys. Lett., 36, pp. 523-525 (1980)
104. Norio Kashima, “Passive optical comments for optical fiber transmission,” Artech House (1995)
105. O. Hannaizumi, M. Miyagi, M. Minakata, S. Kawakami,“Attenna coupled Y junction in 3-dimensional dielectric waveguide,” European Conf. on Optical Communications ECOC, 179 (1985)
106. P. K. Tien, R. J. Martin , “Experiments on light waves in a thin tapered film and a new light-wave coupler,” Appl. Phys. Lett., 18, pp. 398-400(1974)
107. F. Xia, J. K. Thomson, M. R. Gokhale, P. V. Studenkov, J. Wei, W. Lin and S. R. Forrest, “An Asymmetric Twin-Waveguide High-Bandwidth Photodiode Using a Lateral Taper Coupler” IEEE, Photon. Tech. Lett., 13, pp. 845-847 (2001)
108. V. S. Mottonen,“Wideband Coplanar Waveguide -to-Rectangular Waveguide Transition Using Fin-Line Taper,” IEEE, Micro. and Wireless Compon. Lett., 15, pp. 119-121 (2005)
109. L. L. Buhl, “Optical losses in metal/SiO2-clad Ti:LiNbO3 waveguide,” Electron. Lett., 19, pp. 659-661 (1983)
110. G. P. Bava, R. Orta, “Optical frequency mixing in planar waveguides: influence of crystal orientation,” Appl. Phys. A26, pp. 185-189 (1981)
111. J. L. Jackel, V. Ramaswamy, S. P. Lyman, “ Elimination of out-duffused surface guiding in titanium diffused LiNbO3” Appl. Phys. Lett., 38, pp. 509-511 (1981)
112. C. Themistos and B. M. Azizur Raham, “Design issues of a multimode interference-based 3-dB splitter,” Appl. Opt. Vol. 41. pp.7037-7044 (2002)
113. M. N. Armenise, M. Desario, “ Optical rectangular waveguide in titanium diffused niobate having its optoical axis in the transverse plane,” J. Opt. Soc. Am., 72, pp. 1514-1516 (1982)
114. L. Soldano, F. Veerman, M. Yasu and Y. Hibino,“Multimode interference coupler,” Proc. Integrated Photonic Research Topical Meeting, Monterey, CA, April, Post TuD1 (1991)
115. E. Pennings, R. Deri, A. Scherer, R. Bhat, T. Hayes, N. Andreadakis, M. Smit and R. Hawkins, “Ultra-compact, low-loss directional coupler structure on InP for monolithic integration, ” Proc. Integrated Photonics Research Topical Meeting, Monterey, CA. April, Post-dealine PD2 (1991)
116. M. Mamsuripur, “The Talbot effect,” Opt. & Photonic News, 43. pp. 42-47, (1997)
117. L. Soldano and E. Pennings, “Optical Multi-Mode Interference Devices Based on self-imaging Principle and Application,” J. Lightwave Technol., 13, pp 615-627
118. A. Yehia, K. Madkour, H. Maaty and D. Khalil, “Multiple-Imaging in 2-D MMI silicon hollow waveguide,” IEEE, Photon. Technol. Lett., 16, pp. 2072-2074 (2004)
119. Martin T. Hill, X. J. Leijtens, G. D. Khoe and M. K. Smit, “ Optimizing Imbalance and Loss in 2×2 3-dB Multimode Interference Couplers via Access Waveguide Width.” IEEE, J. Lightwave Technol., 21, pp.2305-2313 (2003)
120. S. S. Lo, M. S. Wang and C. C. Chen, “Semiconductor hollow optical waveguide formed by omni-directional reflector” Opt. Exp., 12, pp. 6590- (2004)
121. C. Themistos and B. M. A. Rahman, “Design issues of multimode interference-based 3-dB splitter,” Appl. Opt., 41,pp.7037-7044 (2002)
122. P. Trinh, S. Yegnanarayanan and B. Jalali, “5x9 Integrated Optical Star Coupler in Slicon-on-Insulator Technology,” IEEE Photonic Technol. Lett., 8, pp.794-796 (1996)
123. J. P. Dowling, M. Scalora, M. J. Bloemer and C. M. Bowden, “A photonic band edge laser: A new approach to gain enhancement”, J. Appl. Phys., 75, pp.1896-1899 (1996)
124. L, Florescu, K. Busch and S. John, “Semiclassical theory of lasing in photonic crystals”, J. Opt. Soc. Am. B, 19, pp.2215-2223 (2002)
125. M. L. Povinelli, M. lbanescu, S. G. Johnson and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional reflector waveguide,” Appl. Phys. Lett., 85, pp. 1466-1468 (2004)
126. S. Suzuki, M. Yanagisawa, Y. Hibino and K. Oda, “High-density integrated plannar lightwave circuit using SiO2-GeO2 waveguides with a high refractive index difference,” J. Lightwave Technol., 12, pp.790-796, (1994)
127. P. Dumais, C. L. Callender, J. P. Noad and C. J. Ledderhof, “Silica-on Silicon Optical Sensor Based on Integrated Waveguide and Microchannels,” IEEE, Photonic Technol. Lett., 17,pp.441-443 (2005)
128. R. Krahenbuhl, R. Kyburz, W. Vogt, M. Bachmann, T. Brenner, E. Gini and H. Melchior, “ Low-Loss Polarization-Insensitive InP-InGaAsP Optical Space Switches for Fiber Optical Communication,” IEEE Photonic Technol. Lett., 8, pp. 632-634 (1996) |