博碩士論文 91226003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.119.122.140
姓名 蕭輔力(Fu-Li HSIAO)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 禁止頻帶材料的光學與聲波特性研究
(Optical and acoustical properties of band gap materials.)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 漸變式光子晶體透鏡研究★ 光子晶體波導光束直進之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的主題在於研究電磁波和彈性波在人造晶體中的傳播特性。這種晶體被稱為光子晶體以及聲子晶體。
論文的第一個部份是三維光子晶體的反射特性研究。所使用的光子晶體是由微米尺寸的小球,堆積成面心立方結構而成。晶體中參雜銀的奈米小球。由於三維光子晶體的禁止頻帶特性,導致某些頻率的入射光無法穿透而被反射。研究的結果顯示,反射光的光譜會隨著入射角度不同而改變。並且藉由參雜適當濃度的奈米銀小球,可以有效的提升反射的效率。
論文的第二個部份是彈性波在二維聲子晶體和三維聲子晶體中傳播特性的研究。所使用的二維聲子晶體是由鋼柱在水中週期性的排列而成。三維聲子晶體是在樹脂中嵌入面心立方堆積的鋼珠所形成。藉由研究彈性波對這些結構不同方向的穿透特性測量來進行傳播特性的研究。結果顯示出聲子晶體的禁止頻帶,並且與理論分析的結果吻合。研究也包含二維聲子晶體的結構缺陷特性分析,分析的結果顯示出缺陷結構可以有效的侷限以及控制彈性波。
最後一個部分是聲子晶體平板的研究。聲子晶體平板是在樹脂平板中,嵌入一層排列成四方晶格的鋼珠所構成。在平板中的彈性波稱為板波(Lamb wave)。藉由研究板波的穿透頻譜以及板波在結構中的分布來分析聲子晶體平板的特性。實驗結果顯示由一般吸收或禁止頻帶所造成之能量衰減的不同。同時也顯示出在聲子晶體平板中製造線缺陷結構可以有效的控制板波的傳播。
摘要(英) This thesis deals with the propagation properties of the electromagnetic and the elastic waves in artificial crystals which are called photonic and phononic crystals, respectively.
In the first part, the three dimensional photonic crystals formed by microspheres with Ag nano particles coating are studied. The light can be reflected by crystals due to the partial band gap of the photonic crystals arranged in face-centered cubic structure. The results reveal that the reflectance is wavelength dependant and can be enhanced by suitable Ag coating on the microspheres.
In the second part, the bulk elastic waves propagating in two-dimensional and three-dimensional phononic crystals are studied experimentally and theoretically. The two-dimensional phononic crystals are constructed using steel cylinders. The cylinders are arranged periodically in water. The three-dimensional phononic crystal consists of close-packed periodic arrays of spherical beads of steel embedded in an epoxy matrix. The forbidden band gap can be observed in the experimental measurement of the transmission spectra. The results agree with the theoretical calculations. The defect modes in two-dimensional phononic crystals are also studied. The results show that the bulk elastic waves could be well controlled and confined by the phononic crystal structures.
The propagation of acoustic waves in a square-lattice phononic crystal slab consisting of a single layer of spherical steel beads in a solid epoxy matrix is studied experimentally and theoretically. The transmission and the field image of acoustic wave are investigated. The transmission attenuation caused by absorption and band gap effects is measured as a function of frequency and propagation distance. We also demonstrate experimentally that the acoustic waves are well confined and propagate inside a line-defect waveguide.
關鍵字(中) ★ 板波
★ 光子晶體
★ 波導
★ 人造蛋白石
★ 禁止頻帶
★ 聲子晶體
關鍵字(英) ★ waveguide
★ artificial opals
★ photonic crystals
★ band gap
★ phononic crystals
★ lamb wave
論文目次 中文摘要... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝辭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
1 Introduction to photonic and phononic crystals 1
2 Introduction to photonic and phononic crystals 4
2.1 History and development of photonic crystals . . . . . . . . . . . . . . . 4
2.1.1 Photonic crystals in Nature . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Photonic crystal fiber . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Colloidal microsphere base photonic crystal . . . . . . . . . . . . 15
2.2 History and development of phononic crystals . . . . . . . . . . . . . . . 17
2.3 Elastic wave propagation in materials . . . . . . . . . . . . . . . . . . . 26
2.4 Theoretical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Finite-Difference Time-Domain method . . . . . . . . . . . . . . 29
2.4.2 Finite element method . . . . . . . . . . . . . . . . . . . . . . . 32
3 Optical properties of metallodielectric opals 34
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Plane Wave Expansion (PWE) . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Fabrication of opals and experimental samples . . . . . . . . . . . . . . . 37
3.3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 Bulk waves in two dimensional water-steel and three dimentional epoxy-steel
phononic crystals 49
4.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Two-dimentional water-steel phononic crystals . . . . . . . . . . . . . . 50
4.2.1 The geometric and elastic properties of the structure . . . . . . . 50
4.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Triangular lattice structure . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 Honeycomb lattice structure . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Discussion of complete band gap in triangular and honeycomb
lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Line defect waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Three-dimensional epoxy-steel phononic crystals . . . . . . . . . . . . . 75
4.4.1 Structure and experimental setup . . . . . . . . . . . . . . . . . . 75
4.4.2 Complete band gaps . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5 Square lattice steel-epoxy phononic crystal slab 83
5.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Introduction to the experiment method . . . . . . . . . . . . . . . . . . . 84
5.2.1 Fabrication and properties of the structures . . . . . . . . . . . . 84
5.2.2 Optical characterization setup . . . . . . . . . . . . . . . . . . . 87
5.2.3 Principle of laser interferometer . . . . . . . . . . . . . . . . . . 89
5.3 Complete band gap characterization . . . . . . . . . . . . . . . . . . . . 90
5.4 Attenuation behavior versus propagation distance . . . . . . . . . . . . . 93
5.5 Line defect waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Unusual refraction effect . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6 General Conclusion 106
Bibliography 109
參考文獻 [1] Gérard Tayeb, Boris Gralak, and Stefan Enoch. "Structural Colors in Natureand Butterfly-Wing Modeling". Optics and Photonics News, 14:38, 2003.
[2] L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horvath, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, and J.-P. Vigneron. "Role of photonic-crystaltype structures in the thermal regulation of a Lycaenid butterfly sister species pair". Phys. Rev. E, 67:021907, 2003.
[3] Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, and Hirohito Yamada. "Lightwave propagation through a 120 sharply bent single-line-defect photonic crystal waveguide". Appl. Phys. Lett., 76:952, 2000.
[4] E. Chow S. Y. Lin, J. Bur, S. G. Johnson, and J. D. Joannopoulos. "Low-loss, wide-angle Y splitter at 1.6μ wavelengths built with a two-dimensional photonic crystal". Opt. Lett., 27:1400, 2002.
[5] Axel Scherer, Oskar Painter, Jelena Vuckovic, Marko Loncar, and Tomoyuki Yoshie. "Photonic Crystals for Confining, Guiding, and Emitting Light". IEEE TRANSACTIONS ON NANOTECHNOLOGY,, 1:4, 2002.
[6] T. A. Birks, J. C. Knight, and P. St. J. Russell. "Endlessly single-mode photonic crystal fiber". Opt. Lett., 22:961, 1997.
[7] Jinendra K. Ranka, Robert S. Windeler, and Andrew J. Stentz. "Visible continuum generation in aira˛Vsilica microstructure optical fibers with anomalous dispersion at 800 nm". Opt. Express, 25:25, 2000.
[8] H. Míguez, C. López, F. Meseguer, A. Blanco, L. Vázquez, R. Mayoral, M. Oca na,
V. Fornés, and A. Mifsud. "Photonic crystal properties of packed submicrometric
SiO2 spheres". Appl. Phys. Lett., 71:1148, 1997.
[9] Chia-Hua Chan, Chii-Chang Chen, Chih-Kai Huang, Wei-Hsiang Weng, Hung- SenWei, HuiChen, Hsiao-Tsung Lin, Hsiang-Szu Chang, Wen-Yen Chen, Wen- Hao Chang, and Tzu-Min Hsu. "Self-assembled free-standing colloidal crystals". Nanotechnology, 16:1440, 2005.
[10] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani. "Acoustic band structure of periodic elastic composites". Phys. Rev. Lett., 71, 1993.
[11] Xinhua Hu, Yifeng Shen, Xiaohan Liu, Rongtang Fu, and Jian Zi. "Superlensing effect in liquid surface waves". Phys. Rev. E, 69, 2004.
[12] Manzhu Ke, Zhengyou Liu, Pei Pang, Chunyin Qiu, Degang Zhao, and Weijia Wen. "Experimental demonstration of directional acoustic radiation based on twodimensional phononic crystal band edge states". Appl. Phys. Lett., 90:083509, 2007.
[13] Eli Yblonovitch. "Inhibited Spontaneous Emission in Solid-State Physics and lectronics". Phys. Rev. Lett., 58:2059, 1987.
[14] Sajeev John. "Strong Localization of Photons inCertain Disordered Dielectric Superlattices". Phys. Rev. Lett., 58:2486, 1987.
[15] V. Kuzmiak. "Localized defect modes in a two-dimensional triangular photonic crystal". Phys. Rev. B, 57:15242, 1998.
[16] E. R. Brown, C. D. Parker, and E. Yablonovitch. "Radiation properties of a planar antenna on a photonic-crystal substrate". J. Opt. Soc. Am. B, 10:404, 1993.
[17] H. Y. Ryu, J. K. Hwang, and Y. H. Lee. "Effect of size nonuniformities on the band gap of two-dimensional photonic crystals". Phys. Rev. B, 59:5463, 1999.
[18] M. Qiu and S. He. "Large complete band gap in two-dimensional photonic crystals with elliptic air holes". Phys. Rev. B, 60:10610, 1999.
[19] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith. "A three-dimensional optical photonic crystal with designed point defects". Nature, 429:538, 2004.
[20] J. G. Fleming and S. Y. Lin. "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 m". Opt. Lett., 24:49, 1999.
[21] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan. "Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths". Science, 289:604, 2000.
[22] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield. "Fabrication of photonic crystals for the visible spectrum by holographic lithography". Nature, 404:53, 2000.
[23] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris. "On-chip natural assembly of silicon photonic bandgap crystals". Nature, 414:289, 2001.
[24] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S.W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel. "Large scale synthesis of a silicon photonic crystal with a complete threedimensional bandgap near 1.5 micrometers". Nature, 405:437, 2000.
[25] C. C. Cheng and A. Scherer. "Fabrication of photonic band-gap crystals". J. Vac. Sci. Technol., 13:2696, 1995.
[26] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi. "Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation". Appl. Phys. Lett., 81:3122, 2002.
[27] S. R. Kennedy and M. J. Brett. "Fabrication of Tetragonal Square Spiral Photonic Crystals". Nano Lett., 2:59, 2002.
[28] E. Kuramochi, M. Notomi, T. Kawashima, C. Takahashi J. Takahashi, T. Tamamura, and S. Kawakami. "A new fabrication technique for photonic crystals: Nanolithography combined with alternating-layer deposition". Opt. Quant. Elec., 34:53, 2002.
[29] R.C. McPhedran et al. "Structural colours through photonic crystals". Physica B, 338:182, 2003.
[30] A. R. Parker, R. C. McPhedran, D. R. McKenzie, and and N. A. P. Nicorvici L. C. Botten. "Aphroditea˛e˛s iridescence". Nature, 409:36, 2001.
[31] Robert D. Meade, A. Devenyi, J. D. Joannopoulos, D. A. Smith 0. L. Alerhand, and K. Kash. "Novel applications of photonic band gap materials: Low-loss bends and high Q cavlties". J. Appl. Phys., 75:4753, 1994.
[32] Attila Mekis, J. C. Chen, I. Kurland, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos. "High Transmission through Sharp Bends in Photonic Crystal Waveguides". Phys. Rev. Lett., 77:3787, 1996.
[33] C. Martijn de Sterke, and A. A. Asatryan L. C. Botten, and and R. C. McPhedran T. P. White. "Modes of coupled photonic crystal waveguides". Opt. Lett., 29:1384, 2004.
[34] Zhi-Yuan Li and Kai-Ming Ho. "Anomalous Propagation Loss in Photonic Crystal Waveguides". Phys. Rev. Lett., 92:063904, 2004.
[35] H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van
Hulst, T. F. Krauss, and L. Kuipers. "Real-Space Observation of Ultraslow Light
in Photonic CrystalWaveguides". Phys. Rev. Lett., 94:073903, 2005.
[36] H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers. "Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic CrystalWaveguides". Phys. Rev. Lett., 94:123901, 2005.
[37] F. S.-S Chien, J. B. Tu, W.-F. Hsieh, and S.-C. Cheng. "Tight-binding theory for coupled photonic crystal waveguides". Phys. Rev. B, 75:125113, 2007.
[38] Ahmed Sharkawy, Shouyuan Shi, and DennisW. Prather. "Electro-optical switching using coupled photonic crystal waveguides". Opt. Express, 10:2002, 2002.
[39] Min Qiu, Mikael Mulot, Marcin Swillo, Srinivasan Anand, Bozena Jaskorzynska, Anders Karlsson, Martin Kamp, and Alfred Forchel. "Photonic crystal optical filter based on contra-directional waveguide coupling". Appl. Phys. Lett., 83:5121, 2003.
[40] F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng. "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides". Opt. Express, 12:1119, 2004.
[41] G. Tayeb and D. Maystre. "Rigorous theoretical study of finite-size twodimensional photonic crystals doped by microcavities". J. Opt. Soc. Am. A., 14:3323, 1997.
[42] Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson. "Ultrasmall Mode Volumes in Dielectric Optical Microcavities". Phys. Rev. Lett., 95:143901, 2005.
[43] Dirk Englund, David Fattal, EdoWaks, Glenn Solomon, Bingyang Zhang, Toshihiro Nakaoka, Yasuhiko Arakawa, Yoshihisa Yamamoto, and Jelena Vuˇckovi´c. "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two- Dimensional Photonic Crystal". Phys. Rev. Lett., 95:013904, 2005.
[44] Jiˇrí Chaloupka, Javad Zarbakhsh, and Kurt Hingerl. "Local density of states and modes of circular photonic crystal cavities". Phys. Rev. B, 72:085122, 2005.
[45] Emanuel Istrate, Alexander A. Green, and Edward H. Sargent. "Behavior of light at photonic crystal interfaces". Phys. Rev. B, 71:195122, 2007.
[46] Tao Xu, Suxia Yang, Selvakumar V. Nair, and H. E. Ruda. "Nanowire-array-based photonic crystal cavity by finite-difference time-domain calculations". Phys. Rev. B, 75:125104, 2007.
[47] D. Oa˛e˛Brien, A. Gomez-Iglesias, M. D. Settle, A. Michaeli, M. Salib, and T. F. Krauss. "Tunable optical delay using photonic crystal heterostructure nanocavities". Phys. Rev. B, 76:115110, 2007.
[48] J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin. "All-silica single-mode optical fiber with photonic crystal cladding". Opt. Lett., 21:1547, 1996.
[49] Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljˇacíc, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink. "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers". Opt. Express, 9:748, 2001.
[50] J. D. Shephard, J. D. C. Jones, D. P. Hand, J.C. Knight G. Bouwmans, P. St.J. Russell, and B. J. Mangan. "High energy nanosecond laser pulses delivered singlemode through hollow-core PBG fibers". Opt. Express, 12:717, 2004.
[51] Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D. Harvey, Jonathan C. Knight, William J. Wadsworth, and Philip St. J. Russell. "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber". Opt. Lett., 26:1356, 2001.
[52] I˙. I˙nanc Tarhan and George H.Watson. "Photonic Band Structure of fcc Colloidal Crystals". Phys. Rev. Lett., 76:315, 1996.
[53] V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich. "Photonic band gap phenomenon and optical properties of artificial opals". Phys. Rev. E., 55:7619, 1997.
[54] Zhi-Yuan Li and Zhao-Qing Zhang. "Fragility of photonic band gaps in inverseopal photonic crystals". Phys. Rev. B, 62:1516, 2000.
[55] F. López, T. Ochiai, K. Sakoda, and J. Sánchez-Dehesa. "Symmetry characterization of eigenstates in opal-based photonic crystals". Phys. Rev. B., 65:195110, 2002.
[56] Z. L. Wang, C. T. Chan, W. Y. Zhang, Z. Chen, N. B. Ming, and P. Sheng. "Optical properties of inverted opal photonic band gap crystals with stacking disorder". Phys. Rev. E, 67:016612, 2003.
[57] Chii-Chang Chen, Ya-Lun Tsai, Che-Lung Hsu, and Jenq-Yang Chang. Propagation loss reduction of photonic crystal slab waveguides by microspheres". Opt. Express, 16:3934, 2004.
[58] E. Pavarini, L. C. Andreani, C. Soci, M. Galli, and D. Comoretto F. Marabelli. "Band structure and optical properties of opal photonic crystals". Phys. Rev. B., 72:045102, 2005.
[59] C. Goffaux and J. P. Vigneron. "Theoretical study of atunable phononic band gap system". Phys. Rev. B, 64:075118, 2001.
[60] C. Goffaux, F. Maseri, J. O. Vasseur, B. Djafari-Rouhani, and P. Lambin. "Measurements and calculations of the sound attenuation by a phononic band gap structure suitable for an insulating partition application". Appl. Phys. Lett., 83:281, 2003.
[61] B. C. Gupta and Z. Ye. "Theoretical analysis of the focusing of acoustic waves by two-dimensional sonic crystals". Phys. Rev. E, 67:036603, 2003.
[62] A. Khelif, B. Djafari-Rouhani, J.-O. Vasseur, and P. A. Deymier. "Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal". Phys. Rev. B, 65, 2002.
[63] A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski. "Two-dimensional phononic crystal with tunable narrow pass band: application to a waveguide with selective frequency". J. Appl. Phys, 94:1308–11, 2003.
[64] M. S. Kushwaha and P. Halevi. "Ultra wideband filter for noise control". Japan. J. Appl. Phys, 36:L1043–4, 1997.
[65] I. E. Psarobas, N. Stefanou, and A. Modinos. "Phononic crystals with planar defects". Phys. Rev. B, 62:5536-40, 2000.
[66] R. Sainidou, N. Stefanou, and A. Modinos. "Formation of absolute frequency gaps in three-dimensional solid phononic crystals". Phys. Rev. B, 66:212301, 2002.
[67] J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost. "Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals". Phys. Rev. Lett., 86, 2001.
[68] J. O. Vasseur, P. A. Deymier, A. Khelif, B. Lambin, P. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, and J. Zemmouri. "Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: a theoretical and experimental study". Phys. Rev. E, 65:056608, 2002.
[69] Liu Y Y Zhang X, Liu Z Y and Wu F G. "Elastic wave band gaps for threedimensional phononic crystals with two structural units". Phys. Rev. E, 313:455– 60, 2003.
[70] E. Hoskinson and Z. Ye. "Phase transition in acoustic propagation in 2D random liquid media". Phys. Rev. Lett, 83:2734–7, 1999.
[71] R. James, S. M. Woodley, C. M. Dyer, and V. F. Humphrey. "Sonic bands, bandgaps, and defect states in layered structuresa˛Xtheory and experiment". J. Acoust. Soc. Am., 97:2041–7, 1995.
[72] W. M. Robertson and J. F. III Rudy. "Measurement of acoustic stop bands in twodimensional periodic scattering arrays". J. Acoust. Soc. Am., 104:Pt1 694–9, 1998.
[73] J.V. Sanchez-Perez, D. Caballero, R. Martinez-Sala, C. Rubio, J. Sanchez-Dehesa, F. Meseguer, J. Linares, and F. Galvez. "Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders". Phys. Rev. Lett., 80:5325, 1998.
[74] C. Rubio, D. Caballero, J. Sanchez-Perez, R. Martinez-Sala, J. Sanchez-Dehesa, F. Meseguer, and F. Cervera. "The Existence of Full Gaps and Deaf Bands in Two-Dimensional Sonic Crystals". J. Lightwave Technol., 17:2202, 1999.
[75] T. Miyashita. "Full Band Gaps of Sonic Crystals Made of Acrylic Cylinders in Air -Numerical and Experimental Investigations-". Jpn. J. App. Phys., 41:3170, 2002.
[76] T. Miyashita and C. Inoue. "Numerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method". Japan. J. Appl. Phys., 40:3488–92, 2001.
[77] T. Miyashita. "Sonic crystals and sonic wave-guides". Measurement Science And Technology, 15:R47, 2005.
[78] E.N. Economou and M. M. Sigalas. "Classical wave propagation in periodic structures: Cermet versus network topology". Phys. Rev. B, 48, 1993.
[79] M. S. Kushwaha and P. Halevi. "Band-gap engineering in periodic elastic composites". Appl. Phys. Lett., 64, 1993.
[80] R. Martinez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer. "Sound attenuation by sculpture". Nature, 378, 1995.
[81] J.O. Vasseur, P. A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, and L. Dobrzynski. "Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media". J. Phys. Condens. Matter, 10, 1998.
[82] M. S. Kushwaha and B. Djafari-Rouhani. "Complete acoustic stop bands for cubic arrays of spherical liquid balloons". J. App. Phys., 86, 1996.
[83] F. R. Montero de Espinosa, E. Jimenez, and M. Torres. "Ultrasonic Band Gap in a Periodic Two-Dimensional Composite". Phys. Rev. Lett., 80, 1998.
[84] J. Wen, G. Wang, D. Yu, H. Zhao, and Y. Liu. "Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure". J. App. Phys., 97, 2005.
[85] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng. "Locally Resonant Sonic Materials". Science, 289, 2000.
[86] Yukihiro Tanaka and Shin-ichiro Tamura. "Surface acoustic waves in twodimensional periodic elastic structures". Phys. Rev. B, 58, 1998.
[87] Yukihiro Tanaka and Shin-ichiro Tamura. "Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer". Phys. Rev. B, 60, 1999.
[88] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. Lopez, and J. Llinares. "Rayleigh-wave attenuation by a semi-infinite twodimensional elastic-band-gap crystal". Phys. Rev. B, 59, 1999.
[89] R. E. Vines, J. P. Wolfe, and A. V. Every. "Scanning phononic lattices with ultrasound". Phys. Rev. B, 60, 1999.
[90] Taek Seong Jeong, Jae-Eun Kim, and Hae Yong Park. "Experimental measurement of water wave band gaps". Appl. Phys. Lett., 85, 2004.
[91] Lisa Dhar and Rogers John A. "High frequency one-dimensional phononic crystal characterized with a picosecond transient grating photoacoustic technique". Appl. Phys. Lett., 77, 2000.
[92] Dieter M. Profunser, Oliver B. Wright, and Osamu Matsuda. "Imaging Ripples on Phononic Crystals Reveals Acoustic Band Structure and Bloch Harmonics". Phys. Rev. Lett., 97, 2006.
[93] Vincent Laude, Mikael Wilm, Sarah Benchabane, and Abdelkrim Khelif. "Full band gap for surface acoustic waves in a piezoelectric phononic crystal". Phys. Rev, E, 71, 2005.
[94] Tsung-Tsong Wu, Liang-Chen Wu, and Zi-Gui Huangb. "Frequency bandgap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers". J. Appl. Phys., 97, 2005.
[95] S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, and V. Laude. "Evidence for complete surface wave band gap in a piezoelectric phononic crystal". 73:065601(R), June 2006.
[96] Jin-Chen Hsu and Tsung-Tsong Wu. "Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates". Phys. Rev. B, 74:144303, 2006.
[97] Xinya Zhang, Ted Jackson, Emmanuel Lafond, Pierre Deymier, and Jerome Vasseur. "Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates". Appl. Phys. Lett., 88:041911, 2006.
[98] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude. "Complete band gaps in two-dimensional phononic crystal slabs". Phys. Rev, E, 74, 2006.
[99] Jian Gao, Jian-Chun Cheng, and Baowen Li. "Propagation of Lamb waves in onedimensional quasiperiodic composite thin plates: A split of phonon band gap". Appl. Phys. Lett., 90:111908, 2007.
[100] Bernard Bonello, Christine Charles, and Francois Ganot. "Lamb waves in plates covered by a two-dimensional phononic film". Appl. Phys. Lett., 90, 2007.
[101] M. M. Sigalas. "Elastic wave band gaps and defect states in two-dimensional composites". J. Acous. Soc. Am., 101, 1997.
[102] M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos, and D. Garcia. "Sonic Band Gaps in Finite Elastic Media: Surface States and Localization Phenomena in Linear and Point Defects". Phys. Rev. Lett., 82, 1999.
[103] M. M. Sigalas and N. Garcia. "Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method ". J. App. Phys., 87, 2000.
[104] D. Garcia-Pablos, M. Sigalas, F. R. Montero de Espinosa, M. Torres, M. Kafesaki,
and N. Garcia. " theory and experiments on elastic band gaps". Phys. Rev. Lett.,
2000.
[105] H. Chandra, P. A. Deymier, and J. O. Vasseur. "Elastic wave propagation along
waveguides in three-dimensional phononic crystals". Phys. Rev. B, 70:054302,
2004.
[106] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude. "Guiding and bending of acoustic waves in highly confined phononic crystal waveguides". Appl. Phys. Lett., 84, 2004.
[107] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude. "Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal". Phys. Rev. B, 68:214301, 2003.
[108] Jia-Hong Sun and Tsung-TsongWu. "Analyses of mode coupling in joined parallel phononic crystal waveguides". Phys. Rev. B., 71, 2005.
[109] Jia-Hong Sun and Tsung-Tsong Wu. "Propagation of acoustic waves in phononic crystal plates and waveguides using a finite-difference time-domain method". Phys. Rev. B, 76:104304, 2007.
[110] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude. "Acoustic channel drop tunneling in a phononic crystal". Appl. Phys. Lett., 87, 2005.
[111] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier. "Tunable filtering and demultiplexing in phononic crystals with hollow cylinders". Phys. Rev. E., 69, 2004.
[112] M. Kafesaki, M. M. Sigalas, and N. Garcia. "Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials". Phys. Rev. Lett., 85, 2000.
[113] X. F. Wang, M. S. Kushwaha, and P. Vasilopoulos. "Tunability of acoustic spectral gaps and transmission in periodically stubbed waveguides". Phys. Rev. B, 65, 2001.
[114] Jing Li, Zhengyou Liu, and Chunyin Qiu. "Negative refraction imaging of acoustic waves by a two-dimensional three-component phononic crystal". Phys. Rev. B, 73, 2006.
[115] Xiangdong Zhang and Zhengyou Liu. "Negative refraction of acoustic waves in two-dimensional phononic crystals". Appl. Phys. Lett., 85, 2004.
[116] Chunyin Qiu, Xiangdong Zhang, and Zhengyou Liu. "Far-field imaging of acoustic waves by a two-dimensional sonic crystal". Phys. Rev. B, 71, 2005.
[117] Liang Feng, Xiao-Ping Liu, Ming-Hui Lu, Yan-Bin Chen, Yan-Feng Chen, Yi- Wei Mao, Jian Zi, Yong-Yuan Zhu, Shi-Ning Zhu, and Nai-Ben Ming. "Acoustic Backward-Wave Negative Refractions in the Second Band of a Sonic Crystal". Phys. Rev. Lett., 96, 2006.
[118] Manzhu Ke, Zhengyou Liu, Chunyin Qiu, Wengang Wang, and Jing Shi. "Negative-refraction imaging with two-dimensional phononic crystals". Phys. Rev. B, 72, 2005.
[119] Suxia Yang, J. H. Page, Zhengyou Liu, M. L. Cowan, C.T. Chan, and P. Sheng. "Focusing of Sound in a 3D Phononic Crystal". Phys. Rev. Lett., 93, 2004.
[120] Suxia Yang, J. H. Page, Zhengyou Liu, M. L. Cowan, C. T. Chan, and Ping Sheng. "Ultrasound Tunneling through 3D Phononic Crystals". Phys. Rev. Lett., 88, 2002.
[121] Chunyin Qiu, Zhengyou Liu, Jun Mei, and Jing Shi. "Mode-selecting acoustic filter by using resonant tunneling of two-dimensional double phononic crystals". Appl. Phys. Lett., 87, 2005.
[122] T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, and E. L. Thomas. "Hypersonic Phononic Crystals". Phys. Rev. Lett., 94, 2002.
[123] Kung-Hsuan Lin, Chieh-Feng Chang, Chang-Chi Pan, Jen-Inn Chyi, Umesh Mishra Stacia Keller, Steven P. DenBaars, and Chi-Kuang Sun. "Characterizing the nanoacoustic superlattice in a phonon cavity using a piezoelectric single quantum well". Appl. Phys. Lett., 89:143103, 2006.
[124] Chunyin Qiu and Zhengyou Liu. "Acoustic directional radiation and enhancement caused by band-edge states of two-dimensional phononic crystals". Appl. Phys. Lett., 89:063106, 2006.
[125] Tsung-Tsong Wu, Chung-Hao Hsu, and Jia-Hong Sun. "Design of a highly magnified directional acoustic source based on the resonant cavity of two-dimensional
phononic crystals". Appl. Phys. Lett., 89:171912, 2006.
[126] "Acoustic Fields and Wave in Solids". Wiley, 1973.
[127] Willem L. Vos, Rudolf Sprik, Alfons van Blaaderen, Arnout Imhof, Ad Lagendijk, nd Gerard H.Wegdam. "Strong effects of photonic band structures on the diffraction of colloidal crystals". Phys. Rev. B., 53:16231, 1996.
[128] Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev. "Existence of a photonic pseudogap for visible light in
synthetic opals". Phys. Rev. B., 55:R13357, 1997.
[129] T. Ochiai and J. Sánchez-Dehesa. "Superprism effect in opal-based photonic crystals". Phys. Rev. B., 64:245113, 2001.
[130] Hiroyuki Takeda and Katsumi Yoshino. "Photonic band structures for threedimensionally periodic arrays of coated spheres". J. Appl. Phys., 93:3188, 2003.
[131] Alexander Moroz. "Metallo-dielectric diamond and zinc-blende photonic crystals". Phys. Rev. B, 66:115109, 2002.
[132] Kazuaki Sakoda. "Optical properties of photonic crystals", chapter 7. Springer, New York, 2001.
[133] D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J. V. Sanchez-Perez, F. Meseguer, and J. Llinares. "Large two-dimensional sonic band gaps". Phys. Rev. E., 60, 1999.
[134] M. M. Sigalas and N. García. "Importance of coupling between longitudinal and transverse components for the creation of acoustic band gaps: The aluminum in mercury case". Appl. Phys. Lett., 76:2307, 2000.
[135] Bernard Bonello, Christine Charles, and Francois Ganot. "Lamb waves in plates covered by a two-dimensional phononic film". Appl. Phys. Lett., 90:021909, 2007.
[136] D. Royer and O. Casula. "A Sensitive Ultrasonics Method for Measuring Transient Motions of a Surface". Appl. Phys. Lett., 67:3248, 1995.
[137] J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa. "Scanning michelson interferometer for imaging surface acoustic wave fields". 25:613–615, 2000.
指導教授 陳啟昌(Chii-Chang CHEN) 審核日期 2008-5-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明