以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:39 、訪客IP:13.58.200.16
姓名 林光耀(Guang-yao Lin) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(Performance Improvement of Semi-rigid Moment Frame with Curved Dampers)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 抗彎框架具有顯著的延展性從而在抗震設計是常用的。然而,由於較低的剛度和結構強度過度變形限制了系統的適用性。提高了系統的結構性能,一個鋼彎曲阻尼器,提出了這項研究。彎曲的阻尼器設計成能放置在梁到塔的區域。風門行為是由它的兩端之間的長度和角度的約束。為了更好地理解上的結構性能的增強彎曲阻尼器的效果,一系列循環載荷試驗進行的。結果發現從試驗結果可知,阻尼器強度較高時風門的角度較小。也有人從結果的比較觀察到,在強度,剛度和能量耗散顯著改進時所提出的彎曲阻尼器加入到該抗彎幀得以實現。最後,彎曲阻尼器的有效的設計建議,提出了工程實踐。 摘要(英) Moment resisting frames possess significant ductility thus are commonly used in the earthquake-resistant design. However, excessive deformation due to lower stiffness and strength of the structures limits the applicability of the system. To improve the structural performance of the system, a steel curved damper is proposed in this study. The curved damper is designed to be placed at the beam to column regions. The damper behavior is governed by its length and angle between the two ends. To better understand the effect of curved dampers on the enhancement of structural performance, a series of cyclic loading test were conducted. It was found from the test results that the damper strength was higher when the angle of damper was smaller. It was also observed from result comparisons that significant improvements in strength, stiffness and energy dissipation were achieved when the proposed curved dampers were added to the moment resisting frames. Finally, effective design recommendation of curved dampers is proposed for engineering practice. 關鍵字(中) ★ 半剛性構架
★ 消能阻尼器關鍵字(英) ★ Improvement
★ Semi-rigid moment frame
★ Curved dampers論文目次 TABLE OF CONTENTS
ABSTRACT………………………………………………………….…....…. i
TABLE OF CONTENTS ……………………………………………...…... ii
LIST OF TABLES ………………………………………………………… v
LIST OF FIGURES ……………………………………………...………….. vi
CHAPTER 1. INTRODUCTION ………….……………………………….. 1
1.1 Background ……………………………………………...…………. 1
1.2 Motivations …………………………………………………………. 3
1.3 Objectives …………………………………………………..………. 4
1.4 Outlines ……………………………………...………………..……. 4
CHAPTER 2. LITERATURE REVIEW ………………………………….. 5
2.1 Connection behavior …………………………………………….….. 5
2.2 Behavior of Rigid Moment Frame ……………...………………….. 5
2.3 Behavior of Semi-rigid Moment Frame …………………...……….. 6
2.4 Top and Seat Angle Connection ………………………………..….. 7
2.5 Behavior of Knee Braced Moment Resisting Frame ……………….. 8
2.6 Behavior of Energy Dissipation Device ………………...………….. 8
2.7 Retrofit and Strengthening Design …………………...…………….. 9
CHAPTER 3. METHODOLOGY …………………………………..…..... 10
3.1 Theory ……………………………………………….…...……….. 10
3.1.1 Strong Column Weak Beam Principles ………………………. 10
3.1.2 Bolted Top and Seat Angle (TSA) Connection …………...…. 11
3.1.3 Double Web Angle with Slot Connection ………………….... 12
3.1.4 Curved Damper ……………………………………………… 12
3.1.4.1 Position of Curved Damper ………………..……………. 12
3.1.4.2 The Bending Capacity of Beam …………………………. 13
3.1.4.3 Dimension and Material Properties of Curved Damper …. 14
3.1.4.4 Angle and Radius of Curved Damper …………………… 14
3.1.4.5 Strength of Curved Damper ……………………...……… 15
3.1.4.6 Small Hinges and High Strength Pin ……………………. 16
3.1.4.7 Stability of Curved Damper …………………………….. 17
3.2 Finite Element Analysis ……………………………………………. 17
3.2.1 Analytical Model for Component Simulation ……………….. 17
3.2.1.1 Steel Angle due to Tension Force ……………………….. 18
3.2.1.2 Curved Plate due to Cyclic Axial Force …………….…... 20
3.2.2 Analytical Model for Frame Simulation ………………...….. 21
CHAPTER 4. EXPERIMENTAL PROGRAM …………………………. 24
4.1 Analytical Results for Preliminary Designs …………….………… 24
4.2 Experimental Description …………………………………………. 25
4.3 Materials Properties ……………………………………………….. 26
4.4 Specimen Label ……………………………….…………...……… 26
4.5 Details of Specimens ……………………………………………… 27
4.6 Instrumentations ………………………………………………...… 32
4.7 Experimental Set-up ………………………………………………. 34
4.8 Loading Protocol ………………………………………………….. 36
CHAPTER 5. RESULTS AND OBSERVATIONS ……………………… 37
5.1 Introduction …………………………………………………...…… 37
5.2 Responses of Semi-rigid Moment Frame (SRMF) ………………... 37
5.3 Responses of Rigid Moment Frame (RMF) ………………………. 38
5.4 Responses of L1-90 ……………………………………….………. 38
5.5 Responses of L2-90 ……………………………………...………... 39
5.6 Responses of L3-90 ……………………………………………….. 40
5.7 Responses of L2-120 ……………………………………………… 41
5.8 Responses of L2-75 ……………………………………..………… 42
5.9 Responses of L2-60 ………………………………………….……. 43
CHAPTER 6. COMPARISONS AND DISCUSSIONS ……………….… 44
6.1 Comparisons Between Experimental and Analytical Results …….. 44
6.2 Strength ……………………………………...……………………. 46
6.3 Stiffness ……………………………………...……………………. 47
6.4 Deformation Capacity ……………………….……………………. 48
6.5 Energy Dissipation ……………………….…………………….…. 49
6.6 Performance Evaluation ………………………………………..…. 50
6.7 Design Recommendations ……………………………………...…. 50
CHAPTER 7. CONCLUSIONS ………………..………………….…….... 52
7.1 Conclusions ……………………….……………………….…….... 52
7.2 Suggestions ……………………..………………………….……… 53
REFERENCES …………………………………….……………….………. 54
TABLES …………………………………….………………………………. 56
FIGURES …………………………………………………………...………. 61
參考文獻 Abolmaali, A., Kukreti, A., Motahari, A. and Ghassemieh, M. Energy dissipation characteristics of semi-rigid connections, Journal of Constructional Steel Research, 65:1187-97, 2009.
AISC. Specification for Structural Steel Buildings. Chicago, IL: American Institute of Steel Construction, 2010.
AISC. Seismic Provisions for Structural Steel Buildings. Chicago, IL : American Institute of Steel Construction, 2005.
ANSYS. Workbench user’s guide. ANSYS Inc, 2013.
Coelho, A.M.G. and Bijlaard, F.S.K. Experimental behavior of high strength steel end-plate connections, Journal of Constructional Steel Research, 63:1228-40, 2007.
Dawood, M. Fiber-reinforced polymer (FRP) composites for strengthening steel structures, Civil and Structural Engineering, 382-409, 2013.
Dubina, D. and Stratan, A. Behaviour of welded connections of moment resisting frames beam-to-column joints, Engineering Structures, 24:1431-40, 2002.
Hsu, H.L and Li, Z.C. Seismic performance of steel frames with controlled buckling mechanisms in knee braces, Journal of Constructional Steel Research, 107:50-60, 2015.
Kishi, N. and Chen, W.F. Moment-rotation relations of semi-rigid connections with angles, Journal of Structural Engineering, ASCE, 116:1813-34, 1990.
Leon, R.T., Hu, J.W. and Schrauben, C. Rotational capacity and demand in top-and-seat angle connections subjected to seismic loading, Connections in Steel Structures V, Amsterdam, June 3-4, 2004.
Pirmoz, A. and Danesh, F. The seat angle role on moment-rotation response of bolted angle connections, Electronic Journal of Structural Engineering, 9, 2009.
Pirmoz, A. and Mohammad, E.R.P. Behavior of bolted top-seat angle connections under combined axial tension and moment loading, The 14th World Conference on Earthquake Engineering, Beijing, China, October 12-17, 2008.
SAC. Protocol for Fabrication, Inspection, Testing, and Documentation of Beam-Column Connection Tests and Other Specimens, SAC/BD-97/02 Version 1.1, SAC Joint Venture, Sacramento, CA, 1997.
Serror, M.H., Diab, R.A. and Mourad, S.A. Behavior of steel moment resisting frames with supplemental damping devices, Journal of Advanced Research 2014.
Wu, W.X. Experimental research on hysteretic behavior of top-seat and web angle connections. 5th International Conference on Environment, Ecosystems and Development, Tenerife, Spain, December 14-16, 2007.
Yang, B. and Tan, K.H. Robustness of bolted-angle connections against progressive collapse: Mechanical modelling of bolted-angle connections under tension, Engineering Structures, 57:153-68, 2013.
Yu, O. and Yu, Y. Retrofitting and strengthening design for the former yihe spinner factory in shanghai, Advanced Materials Research, 133-4:935-39, 2010.
指導教授 許協隆(Hsieh-lung Hsu) 審核日期 2015-8-24 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare