博碩士論文 102223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.137.198.143
姓名 余亞芸(Ya-yun Yu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文主要合成兩種磷酸官能基化的中孔洞材料,並分別探討磷酸官能基化之中孔洞材料對於吸附鑭系金屬中的鉺金屬以及除草劑巴拉刈的吸附效果。
合成方面分為兩大部分,第一部分是以非離子型界面活性劑Brij-76當作模板,以1,4-bis(trithoxysilyl)benzene (BTEB) 和3-(Trihydroxysilyl)propyl methylphosphonate (SPMP) 當作共同矽源,在低酸量的條件下以直接共聚合成法合成出雙官能基的中孔洞材料BS-x,第二部分同樣是以Brij-76當作模板,利用SPMP和Tetraethyl orthosilicate (TEOS) 為共同矽源,合成出含有磷酸官能基的TS-x材料,兩者的磷酸官能基含量皆可高達到40 %。並利用X-ray 粉末繞射、固態核磁共振光譜、等溫氮氣吸脫附、熱重分析儀、穿透式電子顯微鏡及掃描式電子顯微鏡等儀器鑑定材料的結構,同時也鑑定官能基含量對孔洞性質的影響。
應用方面,首先探討鑭系金屬中鉺金屬的吸附,並比較兩種磷酸官能基材料的吸附能力,由結果可得知,若材料中磷酸官能基含量越多,越利於提升金屬的吸附效果,且吸附的最佳條件為pH = 3.5。比較於其他鑭系金屬,含有磷酸的材料對於鉺金屬有較佳的吸附能力,在經過四次重複利用後仍然保有99 %以上的重複使用能力。
在吸附除草劑巴拉刈的實驗部分,發現若修飾上的磷酸官能基越多可能會使孔洞阻塞而不利於巴拉刈的吸附,由於巴拉刈為具有芳香環的分子,利用含有苯環的BS系列材料,藉由 π-π 分子間的吸引力讓巴拉刈更容易進入到孔洞內部和官能基鍵結,進而提升吸附效果。
摘要(英) Here we report synthesis of two kinds of materials functionalized with tunable content of phosphonic acid groups, to adsorb Erbium ions and Paraquat.
One is bifunctional materials, synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic condition using nonionic surfactant Brij-76 as template. These materials were periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall, and denoted as BS-x, where x is the mole ratio of phosphonic acid groups.
The other is synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and SPMP under same condiction like BS-x, and is called TS-x.
Materials were characterized by powder X-ray diffraction (XRD), nitrogen sorption measurements, solid-state 13C and 29Si MAS NMR spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
In adsorption experiment, first, we used BS-x and TS-x to adsorb erbium ions.
The adsorption process was carefully studied with differernt factors.The results reveal that the adsorption of erbium ion on mesoporous silica is strongly dependent on the content of phosphonic acid (PA) groups, and increases with the PA content increases.Theses materials retained more than 99 % metal removal efficiency after use for four consecutive cycles.
The second adsorption experiment suggested that there is a benefit for the use of aromatic groups as the enhanced π-π interaction between the aromatic groups of the BS-x materials and paraquat increase the adsorption in comparison to TS-x.The synthesized materials are promising for adsorption of herbicides.
關鍵字(中) ★ 中孔洞材料
★ 苯環
★ 磷酸
★ 巴拉刈
★ 鉺金屬
關鍵字(英)
論文目次 中文摘要 I
Abstract II
目錄 III
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1中孔洞二氧化矽分子篩 1
1-1-1中孔洞材料簡介 1
1-1-2官能基化之中孔洞材料 4
1-2界面活性劑之簡介 8
1-2-1分子結構種與種類介紹 8
1-2-2共聚高分子 (Block copolymer) 10
1-2-3界面活性劑分子的排列與微胞的形成 11
1-2-4界面活性劑與矽氧化物的交互作用 15
1-3中孔洞材料之應用 19
1-3-1吸附鑭系金屬 19
1-3-2吸附巴拉刈 21
1-4相關文獻回顧 23
1-4-1表面修飾磷酸官能基之中孔洞材料 23
1-4-2含苯環官能基之中孔洞材料 26
1-5研究動機與目的 29
第二章 實驗部分 30
2-1實驗藥品 30
2-2實驗步驟 31
2-2-1合成具苯環以及磷酸官能基之BS-x 31
2-2-2合成具磷酸官能基之TS-x 31
2-2-2-1以不同矽源加入延遲時間合成具磷酸官能基之TS-x 31
2-2-3以硫酸裂解中孔洞材料之模板 32
2-2-4鉺金屬吸附實驗 32
2-2-4-1不同初始濃度下吸附鉺金屬實驗 32
2-2-4-2不同反應時間下吸附鉺金屬實驗 32
2-2-4-3不同pH下吸附鉺金屬實驗 33
2-2-5鉺金屬之檢量線製作 33
2-2-6材料的重複利用性 33
2-2-7巴拉刈吸附實驗 34
2-2-7-1不同初始濃度下吸附巴拉刈實驗 34
2-2-7-2不同反應時間下吸附巴拉刈實驗 34
2-2-7-2不同pH下吸附巴拉刈實驗 35
2-2-8巴拉刈檢量線之製作 35
2-3 實驗設備 36
2-3-1實驗合成設備 36
2-3-2 實驗鑑定儀器 36
2-4 鑑定方法 38
2-4-1 同步輻射光束線 (NSRRC Beam Line) 38
2-4-2 X射線粉末繞射 (Powder X-Ray Diffractometer) 39
2-4-3 氮氣吸脫附等溫曲線、表面積與孔洞特性之鑑定 40
2-4-4傅立葉紅外線吸收光譜儀 (Fourier Transform Infrared Spectrometer;FTIR) 45
2-4-5 熱重分析儀 (Thermogravimetric Analyzer;TGA) 46
2-4-6低真空掃描式電子顯微鏡 (Scanning Electron Microscope;SEM) 48
2-4-7穿透式電子顯微鏡 (Transmission Electron Microscope;TEM) 49
2-4-8 固態核磁共振儀 (Solid State Nuclear Magnetic Resonance;Solid State NMR) 51
2-4-9紫外光-可見光光譜儀 (UV / Vis Spectrometer) 59
第三章 結果與討論 61
3-1合成不同矽源比例之中孔洞材料 61
3-1-1 XRD鑑定 61
3-1-2 13C CP/MAS NMR鑑定 64
3-1-3等溫氮氣吸脫附鑑定 67
3-1-4 29Si MAS NMR鑑定 71
3-1-5 TGA 熱重分析 75
3-1-6 SEM影像 76
3-1-7 TEM影像 78
3-2 中孔洞材料吸附鉺金屬之吸附實驗 81
3-2-1 鉺金屬之UV光譜以及檢量線 81
3-2-2 不同初始濃度吸附鉺金屬之效果 82
3-2-3 在不同反應時間吸附鉺金屬之討論 84
3-2-4 不同pH吸附鉺金屬之探討 85
3-2-5中孔洞材料吸附鉺金屬後的FT-IR 87
3-2-6 材料的重複利用性 88
3-2-7 吸附等溫模式 89
3-3-8動力學吸附探討 93
3-2-9不同鑭系金屬之吸附探討 97
3-3 中孔洞材料吸附巴拉刈之吸附實驗 98
3-3-2 在不同反應時間吸附巴拉刈之討論 98
3-3-1 不同濃度吸附巴拉刈之討論 99
3-3-3 不同pH吸附巴拉刈之探討 100
3-3-4 表面電位 104
3-3-5 吸附等溫模式 106
3-3-6動力學吸附探討 108
第四章 結論 110
參考文獻 111
附錄一 122
第五章 緒論 122
5-1 類沸石咪唑骨架材料 123
5-2有機金屬骨架材料吸附金屬的應用與發展 122
第六章 實驗部分 125
6-1實驗藥品 125
6-2實驗步驟 126
6-2-1純水相系統合成類沸石咪唑骨架材料 (ZIF-90) 126
6-2-2醇水混和系統合成類沸石咪唑骨架材料 (ZIF-90) 126
6-2-3含銀奈米顆粒之類沸石咪唑骨架材料的合成 126
6-2-4還原對硝基苯酚 (4-nitrophenol) 實驗 127
第七章 結果與討論 128
7-1 ZIF-90系列X射線粉末繞射儀 (XRD) 128
7-2 ZIF-90系列之穿隧式電子顯微鏡 (SEM) 影像 129
7-3 ZIF-90之13C CP/MAS NMR 130
7-4 Ag@ZIF-90系列之 (XRD) 131
7-5 Ag@ZIF-90催化實驗 133
7-6化學還原法合成含銀奈米顆粒之類沸石咪唑骨架材料 135
7-7 TEM影像 137
附錄二 138
8-1銅金屬之吸附實驗 138

參考文獻 (1) T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass, and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Biol. Sci., 2014, 1, 74-79.
(2) C. Namasivayam, and D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes and Pigments, 2002, 54, 47-58.
(3) C. Brasquet, and P. Le-Cloirec, Adsorption onto activated carbon fibers: application to water and air treatments, Carbon, 1997, 35, 1307-1313.
(4) N.-K. Raman, and M.-T. Anderson, Template-based approaches to the preparation of amorphous, nanoporous silicas, Chem. Mater., 1996, 8, 1682-1701.
(5) F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Silica‐based mesoporous organic–inorganic hybrid materials, Angew. Chem. Int. Ed., 2006, 45, 3216-3251.
(6) Z. Yan, S.-Y. Tao, J.-X. Yin, and G.-T. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(7) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J.-R. Deka, S.-H. Liao, and K.C.-W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chem. Eur. J., 2013, 19, 6358-6367.
(8) C.-S. Chen, C.-C. Chen, C.-T. Chen, and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(9) A. Arencibia, J. Aguado, and J.-M. Arsuaga, Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury, Appl. Surf. Sci., 2010, 256, 5453-5457.
(10) S. Wang, D.-G. Choi, and S.-M. Yang, Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange, Adv. Mater., 2002, 14, 1311-1314.
(11) F.-R. Wang, J.-Q. Yang, and K.-B. Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A, Anal. Chim. Acta, 2009, 638, 23-28.
(12) A. Stein, B.-J. Melde, and R.-C. Schroden, Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age, Adv. Mater., 2000, 12, 1403-1419.
(13) A.-P. Wight, and M.-E. Davis, Design and preparation of organic-inorganic hybrid catalysts, Chem. Rev., 2002, 102, 3589-3614.
(14) N. Pal, and A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids, Adv. Colloid Interface Sci., 2013, 189, 21-41.
(15) N. Hao, L. Han, Y.-X. Yang, H.-T. Wang, P.-A. Webley, and D.-Y. Zhao, A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption, Appl. Surf. Sci., 2010, 256, 5334-5342.
(16) D.-A. Loy, Sol-gel processing of hybrid organic-inorganic materials based on polysilsesquioxanes, Wiley, 2006,
(17) B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G.-A. Ozin, Past, present, and future of periodic mesoporous organosilicas the PMOs, Acc. Chem. Res., 2005, 38, 305-312.
(18) T.-F. Tadros, Surfactants, Academic Press, 1984.
(19) E.-R. Riegel, and J.-A. Kent, Riegel′s Handbook of Industrial Chemistry, 2003, 353, 851-854.
(20) B. Chu, Structure and dynamics of block copolymer colloids, Langmuir, 1995, 11, 414-421.
(21) M. Almgren, W. Brown, and S. Hvidt, Self-aggregation and phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci, 1995, 273, 2-15.
(22) P. Alexandridis, J.-F. Holzwarth, and T.-A. Hatton, Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(23) D.-F. Evans, and H. Wennerström, The Colloidal Domain: Where physics, chemistry, biology, and technology meet, 2nd Edition, Wiley, 1999, 2, 193-197.
(24) D.-Y. Zhao, Q.-S. Huo, J.-L. Feng, B.-F. Chmelka, and G.-D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(25) G. Wanka, H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions, Macromolecules, 1994, 27, 4145-4159.
(26) 簡振龍, 陰/陽離子界面活性劑的混合增效作用之研究, 2000.
(27) C.-F. Karayigitoglu, M. Tata, V.-T. John, and G.-L. McPherson, Modifications of CdS nanoparticle characteristics through synthesis in reversed micelles and exposure to enhanced gas pressures and reduced temperatures, Colloids Surf., A, 1994, 82, 151-162.
(28) G.-H. Findenegg, Intermolecular and surface forces, Academic Press, 1986, 90, 1241-1242.
(29) K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Surfactants and polymers in aqueous solution, J. Synthetic. Lubric, 2004, 20, 367-370.
(30) G.-J.-D.-A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(31) H.-P. Lin, and C.-Y. Mou, Structural and morphological control of cationic surfactant-templated mesoporous silica, Acc. Chem. Res., 2002, 35, 927-935.
(32) U. Schubert, and N. Husing, Synthesis of inorganic materials, Wiley, 2000, chapter 4.
(33) Y.-C. Hu, Z.-Z. Zhi, Q.-F. Zhao, C. Wu, P. Zhao, H. Jiang, T.-Y. Jiang, and S.-l. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous Mesoporous Mater., 2012, 147, 94-101.
(34) N. Singh, A. Karambelkar, L. Gu, K. Lin, J.-S. Miller, C.-S. Chen, M.-J. Sailor, and S.-N. Bhatia, Bioresponsive mesoporous silica nanoparticles for triggered drug release, J. Am. Chem. Soc., 2011, 133, 19582-19585.
(35) L. Yuan, Q.-Q. Tang, D. Yang, J.-Z. Zhang, F.-Y. Zhang, and J.-H. Hu, Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery, J. Phys. Chem. C, 2011, 115, 9926-9932.
(36) Z. Lin, J.-Z. Li, H.-Y. He, H.-H. Kuang, X.-S. Chen, Z.-G. Xie, X.-B. Jing, and Y.-B. Huang, Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery, RSC Adv., 2015, 5, 9546-9555.
(37) W.-H. Peng, Y.-Y. Lee, C. Wu, and K.C.-W. Wu, Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem., 2012, 22, 23181-23185.
(38) Y.-C. Lee, C.-T. Chen, Y.-T. Chiu, and K.C.-W. Wu, An effective cellulose‐to‐glucose‐to‐fructose conversion sequence by using enzyme immobilized Fe3O4‐loaded mesoporous silica nanoparticles as recyclable biocatalysts, ChemCatChem, 2013, 5, 2153-2157.
(39) S. Dutta, H.-M. Kao, and K.C.-W. Wu, Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems, APL Materials, 2014, 2, 113314.
(40) Y.-J. Hao, Y.-J. Chong, S.-R. Li, and H.-Q. Yang, Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(41) Y.-X. Liu, C. Tian, B. Yan, Q.-Y. Lu, Y.-J. Xie, J. Chen, R. Gupta, Z.-H. Xu, S.-M. Kuznicki, and Q.-X. Liu, Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg 0) removal, RSC Adv., 2015, 5, 15634-15640.
(42) M. Appell, M.-A. Jackson, and M.-A. Dombrink-Kurtzman, Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15, J. Hazard. Mater., 2011, 187, 150-156.
(43) X.-L. Zheng, Y. Liu, M. Pan, X.-Q. Lü, J.-Y. Zhang, C.-Y. Zhao, Y.-X. Tong, and C.-Y. Su, Bright blue‐emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices, Angew. Chem., 2007, 119, 7543-7547.
(44) G.-F.-de. Sa, and O.-L. Malta, Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, Coord. Chem. Rev., 2000, 196, 165-195.
(45) F. Enrichi, Luminescent amino‐functionalized or erbium‐doped silica spheres for biological applications, Ann. N.Y. Acad. Sci., 2008, 1130, 262-266.
(46) H. Yu, L. Xia, and X.-T. Dong, Studies on preparation and luminescent character of Er3+ / Zn2+-(SBA-15) composite materials, J. Lumin., 2015, 158, 220-225.
(47) W. Yantasee, G.-E. Fryxell, R.-S. Addleman, R.-J. Wiacek, K. Pattamakomsan, V. Sukwarotwat, J. Xu, and K.-N. Raymond, Selective removal of lanthanides from natural waters, acidic streams and dialysate, J. Hazard. Mater., 2009, 168, 1233-1238.
(48) S.-S. Chang, T.-H. Lu, M. Eddleston, F. Konradsen, J.-A. Sterne, J.-J. Lin, and D. Gunnell, Factors associated with the decline in suicide by pesticide poisoning in Taiwan: a time trend analysis, 1987-2010, Clinical toxicology, 2012, 50, 471-480.
(49) F.-K. Shieh, C.-T. Hsiao, J.-W. Wu, Y.-C. Sue, Y.-L. Bao, Y.-H. Liu, L. Wan, M.-H. Hsu, J.-R. Deka, and H.-M. Kao, A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals, J. Hazard. Mater., 2013, 260, 1083-1091.
(50) W.-C. Chang, J.R. Deka, H.-Y. Wu, F.-K. Shieh, S.-Y. Huang, and H.-M. Kao, Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal., B, 2013, 142, 817-827.
(51) M. Brigante, and M. Avena, Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater., 2014, 191, 1-9.
(52) R.-J. Corriu, L. Datas, Y. Guari, A. Mehdi, C. Reyé, and C. Thieuleux, Ordered SBA-15 mesoporous silica containing phosphonic acid groups prepared by a direct synthetic approach, Chem. Commun., 2001, 8, 763-764.
(53) Q. Yang, J. Yang, J. Liu, Y. Li, and C. Li, Synthesis and characterization of phosphonic acid functionalized organosilicas with bimodal nanostructure, Chem. Mater., 2005, 17, 3019-3024.
(54) P. Wang, L. Zhao, R.A. Wu, H. Zhong, H. Zou, J. Yang, and Q. Yang, Phosphonic acid functionalized periodic mesoporous organosilicas and their potential applications in selective enrichment of phosphopeptides, J. Phys. Chem. C, 2009, 113, 1359-1366.
(55) Y.-L. Wang, L. Zhu, B.-L. Guo, S.-W. Chen, and W.-S. Wu, Mesoporous silica SBA-15 functionalized with phosphonate derivatives for uranium uptake, New J. Chem., 2014, 38, 3853-3861.
(56) S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, An ordered mesoporous organosilica hybrid material with a crystal-like wall structure, Nature, 2002, 416, 304-307.
(57) N. Bion, P. Ferreira, A. Valente, I.S. Gonçalves, and J. Rocha, Ordered benzene–silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes, J. Mater. Chem., 2003, 13, 1910-1913.
(58) M.P. Kapoor, Q. Yang, and S. Inagaki, Organization of phenylene-bridged hybrid mesoporous silisesquioxane with a crystal-like pore wall from a precursor with nonlinear symmetry, Chem. Mater., 2004, 16, 1209-1213.
(59) M.P. Kapoor, N. Setoyama, Q. Yang, M. Ohashi, and S. Inagaki, Oligomeric polymer surfactant driven self-assembly of phenylene-bridged mesoporous materials and their physicochemical properties, Langmuir, 2005, 21, 443-449.
(60) Y. Goto, and S. Inagaki, Mesoporous phenylene–silica hybrid materials with 3D-cage pore structures, Microporous Mesoporous Mater., 2006, 89, 103-108.
(61) J.R. Deka, C.-L. Liu, T.-H. Wang, W.-C. Chang, and H.-M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents, J. Hazard. Mater., 2014, 278, 539-550.
(62) V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties, Microporous Mesoporous Mater., 2008, 116, 358-364.
(63) Y. Goto, and S. Inagaki, Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant, Chem. Commun., 2002, 2410-2411.
(64) S. Brunauer, L.-S. Deming, W.-E. Deming, and E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 1940, 62, 1723-1732.
(65) 王奕凱, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 博海堂文化公司, 1993.
(66) E.-P. Barrett, L.-G. Joyner, and P.-P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
(67) S.-J. Gregg, K.-S.-W. Sing, and H. Salzberg, Adsorption surface area and porosity, J. Electrochem. Soc., 1967, 114, 279.
(68) G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of heterogeneous catalysis, 1997.
(69) www.slvs.tc.edu.tw/125/20120919020307.
(70) 劉銘璋, 林岱瑋, 王漢松, and 張秋玲, 第七章熱分析, 台灣大學化學系.
(71) 羅聖全, 電子顯微鏡介紹-掃描式電子顯微鏡.
(72) 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用, The Chinese Chem. SOC., Taipei, 2004, 62, 285-298.
(73) A.-E. Bennett, C.-M. Rienstra, M. Auger, K. Lakshmi, and R.-G. Griffin, Heteronuclear decoupling in rotating solids, J. Phys. Chem., 1995, 103, 6951-6958.
(74) http://www.aandb.com.tw/paage0004/uv_cis_nir_04_lambda_750.html.
(75) R. Qadeer, Adsorption of erbium ions on activated charcoal from aqueous solutions, Colloids Surf., A, 2005, 254, 17-21.
(76) L.-Y. Yuan, Z.-Q. Bai, R. Zhao, Y.-L. Liu, Z.-J. Li, S.-Q. Chu, L.-R. Zheng, J. Zhang, Y.-L. Zhao, and Z.-F. Chai, Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium (IV) from aqueous solution, ACS Appl. Mat. Interfaces., 2014, 6, 4786-4796.
(77) M.-R. Mirza, M. Rainer, Y. Güzel, I.-M. Choudhary, and G.K. Bonn, A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation, Anal. Bioanal. Chem., 2012, 404, 853-862.
(78) M. Brigante, and M. Avena, Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater., 2014, 191, 1-9.
(79) W. Morris, C.J. Doonan, H. Furukawa, R. Banerjee, and O.-M. Yaghi, Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks, J. Am. Chem. Soc., 2008, 130, 12626-12627.
(80) F.K. Shieh, S.C. Wang, S.Y. Leo, and K.C.W. Wu, Water‐based synthesis of zeolitic imidazolate framework‐90 (ZIF‐90) with a controllable particle size, Chem. Eur. J., 2013, 19, 11139-11142.
(81) P. Raveendran, Y. Ikushima, and S.L. Wallen, Polar attributes of supercritical carbon dioxide, Acc. Chem. Res., 2005, 38, 478-485.
(82) T.-H. Bae, J.-S. Lee, W. Qiu, W.-J. Koros, C.-W. Jones, and S. Nair, A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals, Angew. Chem. Int. Ed., 2010, 49, 9863-9866.
(83) C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey, and M. Latroche, Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties, J. Am. Chem. Soc., 2010, 132, 2991-2997.
(84) Y.E. Cheon, J. Park, and M.-P. Suh, Selective gas adsorption in a magnesium-based metal–organic framework, Chem. Commun., 2009, 5436-5438.
(85) A. Corma, H. Garcia, and F.-L. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 2010, 110, 4606-4655.
(86) L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, and Z. Tang, Core–shell noble‐metal@metal‐organic‐framework nanoparticles with highly selective sensing property, Angew. Chem. Int. Ed., 2013, 52, 3741-3745.
(87) M. Müller, S. Hermes, K. Kähler, and R.-A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis, Chem. Mater., 2008, 20, 4576-4587.
(88) S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.-W. Fischer, and R.-A. Fischer, Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew. Chem. Int. Ed., 2005, 44, 6237-6241.
(89) Y.-K. Hwang, D.-Y. Hong, J.-S. Chang, S.-H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 2008, 47, 4144-4148.
(90) M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 2007, 17, 3827-3832.
(91) M. Zahmakiran, Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance, Dalton Trans., 2012, 41, 12690-12696.
(92) C. Rösler, and R.-A. Fischer, Metal–organic frameworks as hosts for nanoparticles, CrystEngComm, 2015, 17, 199-217.
(93) G. Lu, S. Li, Z. Guo, O.-K. Farha, B.-G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, and X. Liu, Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation, Nature, 2012, 4, 310-316.
(94) X. Cheng, M. Liu, A. Zhang, S. Hu, C. Song, G. Zhang, and X. Guo, Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53 (Al) frameworks, Nanoscale, 2015, 7, 9738-9745.
(95) P. Adhyapak, P. Karandikar, K. Vijayamohanan, A. Athawale, and A. Chandwadkar, Synthesis of silver nanowires inside mesoporous MCM-41 host, Mater. Lett., 2004, 58, 1168-1171.

指導教授 高憲明 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明