博碩士論文 102324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:13.58.201.240
姓名 郭怡汎(YU-FAN KUO)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 硫化錫-硫化銻作為鋰離子電池負極材料之研究
(SnS-Sb2S3 as Anode Materials for Li Ion Battery)
相關論文
★ 鉬系材料應用於鎂電池正極之性質研究★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究
★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究
★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗藉由溶劑熱法及物理混合法合成出SnS-Sb2S3粉末首次當作負極材料應用在鋰離子電池中,與Sb2S3及SnS做比較。本實驗有兩種不同比例的SnS-Sb2S3粉末:Sn(1)-Sb(2)-S(4)以及Sn(3)-Sb(2)-S(6)。Sn(1)-Sb(2)-S(4)是由溶劑熱法合成出來,分為無煅燒及煅燒兩種;Sn(3)-Sb(2)-S(6)是由溶劑熱法及物理混合法合成出來,也有分為無煅燒及煅燒,總共四種。這六種SnS-Sb2S3粉末與Sb2S3及SnS比較,其中以溶劑熱法製備Sn(3)-Sb(2)-S(6)煅燒後粉末電極在不同速率充放電中有較高的電容值以及在循環穩定性第一圈有較好的可逆電容值;以溶劑熱法製備Sn(1)-Sb(2)-S(4)煅燒後粉末電極於300 mA/g定電流下反覆充放電150圈有後有28 %的維持率。
藉由改變黏著劑以及電解液來提升電容值以及維持率,將黏著劑以及電解液改成polyimide DB100以及1 M LiPF6 in FEC/DEC,電容值以及維持率都提高很多。其中以Sn(1)-Sb(2)-S(4)煅燒後粉末電極在改變黏著劑與電解液之前的電容值是介於SnS與Sb2S3之間,改變之後電容值卻高於SnS與Sb2S3。以溶劑熱法製備Sn(3)-Sb(2)-S(6)煅燒後粉末電極於250 mA/g定電流下反覆充放電50圈後仍有高達92 %的維持率。

摘要(英) Lithium-ion batteries (LIBs) are the most widely used rechargeable batteries for powering electronic devices such as electric vehicles (EV), laptop computers and cellular phones due to their high energy density. We proposed to use ternary Sn-Sb-S metal sulfide as the active materials for LIBs. Specifically, Sn(1)-Sb(2)-S(4) and Sn(3)-Sb(2)-S(6) were first prepared and tested as anode. It is expected that the stepwise lithium insertion mechanism can alleviate volume changes and improve the mechanical stability of the electrode.
In this study, the Sn(1)-Sb(2)-S(4) and the Sn(3)-Sb(2)-S(6) powders are synthesized using solvothermal and physical mixture method. The as-prepared powders and annealed (500 oC) ones were tested. Noted that the as-prepared samples exhibited mixtures of SnS and Sb2S3. Depending on the preparation conditions, annealed samples show a major phase of SnSb2S4 and Sn3Sb2S6. Compare the Sn(1)-Sb(2)-S(4) and the Sn(3)-Sb(2)-S(6) with Sb2S3 and SnS, annealed Sn(3)-Sb(2)-S(6) powder provides the highest capacity of 829 mAh/g. However, anneaned Sn(1)-Sb(2)-S(4) powder has the best cycle stability with the reversible capacity of 164 mAh/g after 150 cycles at a constant current of 300 mA/g, corresponding to 28 % retention.
In a parallel experiment, binder and electrolyte were changed to improve the capacity and retention. Here, the binder, PVdF was replaced by polyimide DB100. The electrolyte was switched from commercial electrolyte (1 M LiPF6 in EC/DEC) to 1 M LiPF6 in FEC/DEC. The capacities of ternary metal sulfide (Sn-Sb-S) were significantly enhanced, even better than that of the Sb2S3 and SnS binary metal sulfide. At a constant current of 250 mA/g, Sn(3)-Sb(2)-S(6) powder exhibits a reversible capacity of 963 mAh/g after 50 cycles with the retention of 92 %.
關鍵字(中) ★ 鋰離子電池
★ 負極
★ 硫化物
關鍵字(英) ★ Li-ion battery
★ anode
★ sulfide
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 4
2-1 鋰離子二次電池概述 4
2-1-1 鋰離子二次電池之發展 4
2-1-2 鋰離子二次電池的工作原理 8
2-2 鋰離子二次電池各元件介紹 11
2-2-1 正極材料 11
2-2-2 電解液 14
2-2-3 隔離膜 17
2-2-4負極材料 17
2-3 Sb2S3之性質簡介及發展近況 21
2-4 SnS之性質簡介及發展近況 25
2-5 SnS-Sb2S3之簡介與發展近況 29
第三章 實驗方法與步驟 32
3-1 實驗藥品與器材 32
3-1-1 化學藥品 32
3-1-2 實驗器材與儀器 34
3-2 實驗步驟 36
3-2-1 以不同溶劑與硫來源製備Sb2S3之鋰電池負極材料 36
3-2-2 以溶劑熱法製備SnS之鋰電池負極材料 39
3-2-3 以溶劑熱法製備Sn(1)-Sb(2)-S(4)之鋰電池負極材料 41
3-2-4 以不同方法製備Sn(3)-Sb(2)-S(6)之鋰電池負極材料 43
3-3 材料鑑定與分析 46
3-3-1 X光粉末繞射儀(X-ray Diffraction, XRD) 46
3-3-2 場發式電子掃描顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 48
3-4 材料電化學分析 49
3-4-1 電極的製備 49
3-4-2 鈕扣型電池組裝 51
3-4-3 循環伏安法(Cyclic Voltammetry, CV) 52
3-4-4 計時電位法 52
第四章 結果與討論 53
4-1 以不同溶劑與硫來源製備Sb2S3之鋰電池負極材料 53
4-1-1 以不同溶劑與硫來源製備Sb2S3粉末之結構分析 53
4-1-2 以不同溶劑與硫來源製備Sb2S3粉末之表面形貌分析 55
4-1-3 以不同溶劑與硫來源製備Sb2S3粉末之循環伏安法測試 59
4-1-4 以不同溶劑與硫來源製備Sb2S3粉末之電化學性能測試 61
4-2 以溶劑熱法製備SnS之鋰電池負極材料 64
4-2-1 以溶劑熱法製備SnS粉末之結構分析 64
4-2-2 以溶劑熱法製備SnS粉末之表面形貌分析 66
4-2-3 以溶劑熱法製備SnS粉末之循環伏安法測試 68
4-2-4 以溶劑熱法製備SnS粉末之電化學性能測試 70
4-3 以溶劑熱法製備Sn(1)-Sb(2)-S(4)之鋰電池負極材料 73
4-3-1 以溶劑熱法製備Sn(1)-Sb(2)-S(4)粉末之結構分析 73
4-3-2 以溶劑熱法製備Sn(1)-Sb(2)-S(4)粉末之表面形貌分析 75
4-3-3 以溶劑熱法製備Sn(1)-Sb(2)-S(4)粉末之循環伏安法測試 78
4-3-4 以溶劑熱法製備Sn(1)-Sb(2)-S(4)粉末之電化學性能測試 80
4-4 以不同方法製備Sn(3)-Sb(2)-S(6)之鋰電池負極材料 83
4-4-1 以不同方法製備Sn(3)-Sb(2)-S(6)粉末之結構分析 83
4-4-2 以不同方法製備Sn(3)-Sb(2)-S(6)粉末之表面形貌分析 86
4-4-3 以不同方法製備Sn(3)-Sb(2)-S(6)粉末之循環伏安法測試 92
4-4-4 以不同方法製備Sn(3)-Sb(2)-S(6)粉末之電化學性能測試 94
4-5 綜合比較 97
4-5-1 Sb2S3、SnS與SnS-Sb2S3粉末電極之電化學性能比較 97
4-5-2 Sb2S3、SnS與SnS-Sb2S3粉末電極改變黏著劑及電解液之電化學性能比較 105
第五章 結論 112
參考文獻 114
附錄 125
參考文獻 1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
2. U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163 (2), 1003-1039.
3. R. A. Huggins, Materials science principles related to alloys of potential use in rechargeable lithium cells. J. Power Sources 1989, 26 (1–2), 109-120.
4. J. Yang, M. Wachtler, M. Winter, J. O. Besenhard, Sub‐microcrystalline Sn and Sn‐SnSb powders as lithium storage materials for lithium‐ion batteries. Electrochemical and Solid-State Letters 1999, 2 (4), 161-163.
5. J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22 (35), E170-E192.
6. A. Débart, L. Dupont, R. Patrice, J. M. Tarascon, Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 2006, 8 (6), 640-651.
7. T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sources 2007, 167 (2), 529-535.
8. C.-H. Lai, K.-W. Huang, J.-H. Cheng, C.-Y. Lee, B.-J. Hwang, L.-J. Chen, Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20 (32), 6638-6645.
9. J. Liu, D. Xue, Sn-based nanomaterials converted from SnS nanobelts: Facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 2010, 56 (1), 243-250.
10. C.-M. Park, Y. Hwa, N.-E. Sung, H.-J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 2010, 20 (6), 1097-1102.
11. H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11 (11), 4826-4830.
12. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, J. Y. Lee, Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201 (0), 259-266.
13. C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22 (1), 19-30.
14. M. S. Whittingham, Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
15. D. Murphy, F. Di Salvo, J. Carides, J. Waszczak, Topochemical reactions of rutile related structures with lithium. Mater. Res. Bull. 1978, 13 (12), 1395-1402.
16. M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 1980, 127 (3), 773-774.
17. Y. Liu, H. Pan, M. Gao, Q. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 2011, 21 (13), 4743-4755.
18. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
19. J. B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
20. J. H. Kim, J. H. Kim, E. Barsoukov, C. O. Yoon, H. Lee, 7Li NMR study of Li intercalated carbons prepared by electrochemical method. Molecular Crystals and Liquid Crystals 1998, 310 (1), 297-302.
21. K. E. Thomas, J. Newman In Thermal Modeling of Batteries with Porous Insertion Electrodes, Intercalation compounds for battery materials: Proceedings of the international symposium, The Electrochemical Society: 2000; p 370.
22. M. S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 2004, 104 (10), 4271-4302.
23. S. SahayaáPrabaharan, M. SiluvaiáMichael, T. PremáKumar, Bulk synthesis of submicrometre powders of LiMn2O4 for secondary lithium batteries. J. Mater. Chem. 1995, 5 (7), 1035-1037.
24. A. K. Padhi, K. Nanjundaswamy, J. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188-1194.
25. L. Wang, Z. Li, H. Xu, K. Zhang, Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J. Phys. Chem. C 2008, 112 (1), 308-312.
26. F. F. Bazito, R. M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. J. Brazil. Chem. Soc. 2006, 17 (4), 627-642.
27. B. L. Ellis, K. T. Lee, L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22 (3), 691-714.
28. M. Wakihara, Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports 2001, 33 (4), 109-134.
29. M. Morita, M. Ishikawa, Y. Matsuda, Organic electrolytes for rechargeable lithium ion batteries. Lithium Ion Batteries: Fundamentals and Performance 1999, 156-180.
30. M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113 (7), 5364-5457.
31. A. R. Kamali, D. J. Fray, Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev. Adv. Mater. Sci 2011, 27 (1), 14-24.
32. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 2005, 4 (5), 366-377.
33. C. Johnson, J. Vaughey, M. Thackeray, T. Sarakonsri, S. Hackney, L. Fransson, K. Edström, J. O. Thomas, Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries. Electrochem. Commun. 2000, 2 (8), 595-600.
34. S.-C. Han, H.-S. Kim, M.-S. Song, J.-H. Kim, H.-J. Ahn, J.-Y. Lee, Nickel sulfide synthesized by ball milling as an attractive cathode material for rechargeable lithium batteries. J. Alloy. Compd. 2003, 351 (1), 273-278.
35. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47 (14), 4252-4254.
36. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682-2699.
37. R. Apostolova, I. Talyosef, J. Grinblat, B. Markovsky, D. Aurbach, Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. Russian Journal of Electrochemistry 2009, 45 (3), 311-319.
38. B. T. Hang, T. Ohnishi, M. Osada, X. Xu, K. Takada, T. Sasaki, Lithium silicon sulfide as an anode material in all-solid-state lithium batteries. J. Power Sources 2010, 195 (10), 3323-3327.
39. H. Senoh, T. Takeuchi, H. Kageyama, H. Sakaebe, M. Yao, K. Nakanishi, T. Ohta, T. Sakai, K. Yasuda, Electrochemical characteristics of aluminum sulfide for use in lithium secondary batteries. J. Power Sources 2010, 195 (24), 8327-8330.
40. Y. Shi, Y. Wan, R. Liu, B. Tu, D. Zhao, Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 2007, 129 (30), 9522-9531.
41. X.-L. Gou, J. Chen, P.-W. Shen, Synthesis, characterization and application of SnS x (x= 1, 2) nanoparticles. Mater. Chem. Phys. 2005, 93 (2), 557-566.
42. H. Yang, X. Su, A. Tang, Microwave synthesis of nanocrystalline Sb2S3 and its electrochemical properties. Mater. Res. Bull. 2007, 42 (7), 1357-1363.
43. C. Marino, A. Debenedetti, B. Fraisse, F. Favier, L. Monconduit, Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13 (4), 346-349.
44. L. Croguennec, M. R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137 (9), 3140-3156.
45. M. Nair, Y. Pena, J. Campos, V. Garcia, P. Nair, Chemically deposited Sb2S3 and Sb2S3‐CuS thin films. J. Electrochem. Soc. 1998, 145 (6), 2113-2120.
46. O. Savadogo, K. C. Mandal, Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energ. Mater. Sol. Cells 1992, 26 (1), 117-136.
47. K. Xiao, Q.-Z. Xu, K.-H. Ye, Z.-Q. Liu, L.-M. Fu, N. Li, Y.-B. Chen, Y.-Z. Su, Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Letters 2013, 2 (6), P51-P54.
48. X. Zhou, L. Bai, J. Yan, S. He, Z. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim. Acta 2013, 108, 17-21.
49. X. Zhou, S. Hua, L. Bai, D. Yu, Synthesis and electrochemical performance of hierarchical Sb2S3 nanorod-bundles for lithium-ion batteries. Journal of Electrochemical Science and Engineering 2014, 4 (2), 45-53.
50. P. V. Prikhodchenko, J. Gun, S. Sladkevich, A. A. Mikhaylov, O. Lev, Y. Y. Tay, S. K. Batabyal, D. Y. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode. Chem. Mater. 2012, 24 (24), 4750-4757.
51. Y. Denis, H. E. Hoster, S. K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Scientific reports 2014, 4.
52. J. Ma, X. Duan, J. Lian, T. Kim, P. Peng, X. Liu, Z. Liu, H. Li, W. Zheng, Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem.-Eur. J. 2010, 16 (44), 13210-13217.
53. G. G. Kumar, K. Reddy, K. S. Nahm, N. Angulakshmi, A. M. Stephan, Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. J. Phys. Chem. Solids 2012, 73 (9), 1187-1190.
54. T. Jiang, G. A. Ozin, New directions in tin sulfide materials chemistry. J. Mater. Chem. 1998, 8 (5), 1099-1108.
55. A. Ghazali, Z. Zainal, M. Zobir Hussein, A. Kassim, Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol. Energ. Mater. Sol. Cells 1998, 55 (3), 237-249.
56. L. A. Burton, D. Colombara, R. D. Abellon, F. C. Grozema, L. M. Peter, T. J. Savenije, G. Dennler, A. Walsh, Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25 (24), 4908-4916.
57. D. Lei, M. Zhang, B. Qu, J. Ma, Q. Li, L. Chen, B. Lu, T. Wang, Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochim. Acta 2013, 106, 386-391.
58. Y. Li, J. Tu, H. Wu, Y. Yuan, D. Shi, Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries. Materials Science and Engineering: B 2006, 128 (1), 75-79.
59. Y. Li, J. P. Tu, X. H. Huang, H. M. Wu, Y. F. Yuan, Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries. Electrochim. Acta 2006, 52 (3), 1383-1389.
60. J. Zhu, D. Wang, T. Liu, Preparation of tin sulfide–graphene composites with enhanced lithium storage. Appl. Surf. Sci. 2013, 282, 947-953.
61. Y. Zhang, J. Lu, S. Shen, H. Xu, Q. Wang, Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47 (18), 5226-5228.
62. H.-C. Tao, X.-L. Yang, L.-L. Zhang, S.-B. Ni, One-step in situ synthesis of SnS/graphene nanocomposite with enhanced electrochemical performance for lithium ion batteries. J. Electroanal. Chem. 2014, 728, 134-139.
63. J.-G. Kang, J.-G. Park, D.-W. Kim, Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries. Electrochem. Commun. 2010, 12 (2), 307-310.
64. D. D. Vaughn, O. D. Hentz, S. Chen, D. Wang, R. E. Schaak, Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 2012, 48 (45), 5608-5610.
65. J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6 (1), 55-64.
66. Y. Li, J. Tu, X. Huang, H. Wu, Y. Yuan, Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries. Electrochem. Commun. 2007, 9 (1), 49-53.
67. J. Cai, Z. Li, P. K. Shen, Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interface 2012, 4 (8), 4093-4098.
68. N. Ali, S. Hussain, Y. Khan, N. Ahmad, M. Iqbal, S. M. Abbas, Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application. Mater. Lett. 2013, 100, 148-151.
69. H. Dittrich, A. Bieniok, U. Brendel, M. Grodzicki, D. Topa, Sulfosalts—A new class of compound semiconductors for photovoltaic applications. Thin Solid Films 2007, 515 (15), 5745-5750.
70. J. Li, Q. Ru, S. Hu, D. Sun, B. Zhang, X. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 2013, 113 (0), 505-513.
71. O. Mao, R. Dunlap, J. Dahn, Mechanically alloyed Sn‐Fe (‐C) powders as anode materials for Li‐Ion batteries: I. the Sn2Fe‐C system. J. Electrochem. Soc. 1999, 146 (2), 405-413.
72. L. Fransson, E. Nordström, K. Edström, L. Häggström, J. Vaughey, M. Thackeray, Structural transformations in lithiated η′-Cu6Sn5 Electrodes probed by in situ mössbauer spectroscopy and X-ray diffraction. J. Electrochem. Soc. 2002, 149 (6), A736-A742.
73. Z. Wang, W. Tian, X. Li, Synthesis and electrochemistry properties of Sn–Sb ultrafine particles as anode of lithium-ion batteries. J. Alloy. Compd. 2007, 439 (1), 350-354.
74. H. Guo, H. Zhao, X. Jia, W. Qiu, F. Cui, Synthesis and electrochemical characteristics of Sn–Sb–Ni alloy composite anode for Li-ion rechargeable batteries. Mater. Res. Bull. 2007, 42 (5), 836-843.
75. Z. Wang, W. Tian, X. Liu, R. Yang, X. Li, Synthesis and electrochemical performances of amorphous carbon-coated Sn–Sb particles as anode material for lithium-ion batteries. J. Solid State Chem. 2007, 180 (12), 3360-3365.
76. J. Li, Q. Ru, S. Hu, D. Sun, B. Zhang, X. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 2013, 113, 505-513.
77. W. X. Chen, J. Y. Lee, Z. Liu, The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 2003, 41 (5), 959-966.
78. X. Niu, H. Zhou, Z. Li, X. Shan, X. Xia, Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J. Alloy. Compd. 2015, 620, 308-314.
79. S. Chen, P. Chen, M. Wu, D. Pan, Y. Wang, Graphene supported Sn–Sb@ carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12 (10), 1302-1306.
80. T. Tabuchi, N. Hochgatterer, Z. Ogumi, M. Winter, Ternary Sn–Sb–Co alloy film as new negative electrode for lithium-ion cells. J. Power Sources 2009, 188 (2), 552-557.
81. C. Nithya, T. Sowmiya, K. V. Baskar, N. Selvaganeshan, T. Kalaiyarasi, S. Gopukumar, High capacity SnxSbyCuz composite anodes for lithium ion batteries. Solid State Sci. 2013, 19, 144-149.
82. R. Yang, J. Huang, W. Zhao, W. Lai, X. Zhang, J. Zheng, X. Li, Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J. Power Sources 2010, 195 (19), 6811-6816.
83. G. Zhu, P. Liu, J. Zhou, X. Bian, X. Wang, J. Li, B. Chen, Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis. Mater. Lett. 2008, 62 (15), 2335-2338.
84. B. Ingham, M. F. Toney, 1 - X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications, Barmak, K.; Coffey, K., Eds. Woodhead Publishing: 2014; pp 3-38.
85. P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl−, NO3−, SO42−) influence on the product stoichiometry. Inorg. Chem. 2011, 50 (7), 3065-3070.
86. T.-L. Wu, 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究. 2014.
87. X. Niu, H. Zhou, Z. Li, X. Shan, X. Xia, Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J. Alloy. Compd. 2015, 620 (0), 308-314.
指導教授 李岱洲、張仍奎 審核日期 2015-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明