參考文獻 |
1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
2. U. Kasavajjula, C. Wang, A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163 (2), 1003-1039.
3. R. A. Huggins, Materials science principles related to alloys of potential use in rechargeable lithium cells. J. Power Sources 1989, 26 (1–2), 109-120.
4. J. Yang, M. Wachtler, M. Winter, J. O. Besenhard, Sub‐microcrystalline Sn and Sn‐SnSb powders as lithium storage materials for lithium‐ion batteries. Electrochemical and Solid-State Letters 1999, 2 (4), 161-163.
5. J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Beyond intercalation‐based Li‐ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22 (35), E170-E192.
6. A. Débart, L. Dupont, R. Patrice, J. M. Tarascon, Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide. Solid State Sci. 2006, 8 (6), 640-651.
7. T.-J. Kim, C. Kim, D. Son, M. Choi, B. Park, Novel SnS2-nanosheet anodes for lithium-ion batteries. J. Power Sources 2007, 167 (2), 529-535.
8. C.-H. Lai, K.-W. Huang, J.-H. Cheng, C.-Y. Lee, B.-J. Hwang, L.-J. Chen, Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20 (32), 6638-6645.
9. J. Liu, D. Xue, Sn-based nanomaterials converted from SnS nanobelts: Facile synthesis, characterizations, optical properties and energy storage performances. Electrochim. Acta 2010, 56 (1), 243-250.
10. C.-M. Park, Y. Hwa, N.-E. Sung, H.-J. Sohn, Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries. J. Mater. Chem. 2010, 20 (6), 1097-1102.
11. H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11 (11), 4826-4830.
12. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, J. Y. Lee, Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201 (0), 259-266.
13. C.-H. Lai, M.-Y. Lu, L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22 (1), 19-30.
14. M. S. Whittingham, Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
15. D. Murphy, F. Di Salvo, J. Carides, J. Waszczak, Topochemical reactions of rutile related structures with lithium. Mater. Res. Bull. 1978, 13 (12), 1395-1402.
16. M. Lazzari, B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc. 1980, 127 (3), 773-774.
17. Y. Liu, H. Pan, M. Gao, Q. Wang, Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 2011, 21 (13), 4743-4755.
18. J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
19. J. B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
20. J. H. Kim, J. H. Kim, E. Barsoukov, C. O. Yoon, H. Lee, 7Li NMR study of Li intercalated carbons prepared by electrochemical method. Molecular Crystals and Liquid Crystals 1998, 310 (1), 297-302.
21. K. E. Thomas, J. Newman In Thermal Modeling of Batteries with Porous Insertion Electrodes, Intercalation compounds for battery materials: Proceedings of the international symposium, The Electrochemical Society: 2000; p 370.
22. M. S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 2004, 104 (10), 4271-4302.
23. S. SahayaáPrabaharan, M. SiluvaiáMichael, T. PremáKumar, Bulk synthesis of submicrometre powders of LiMn2O4 for secondary lithium batteries. J. Mater. Chem. 1995, 5 (7), 1035-1037.
24. A. K. Padhi, K. Nanjundaswamy, J. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188-1194.
25. L. Wang, Z. Li, H. Xu, K. Zhang, Studies of Li3V2(PO4)3 additives for the LiFePO4-based Li ion batteries. J. Phys. Chem. C 2008, 112 (1), 308-312.
26. F. F. Bazito, R. M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials. J. Brazil. Chem. Soc. 2006, 17 (4), 627-642.
27. B. L. Ellis, K. T. Lee, L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22 (3), 691-714.
28. M. Wakihara, Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports 2001, 33 (4), 109-134.
29. M. Morita, M. Ishikawa, Y. Matsuda, Organic electrolytes for rechargeable lithium ion batteries. Lithium Ion Batteries: Fundamentals and Performance 1999, 156-180.
30. M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113 (7), 5364-5457.
31. A. R. Kamali, D. J. Fray, Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev. Adv. Mater. Sci 2011, 27 (1), 14-24.
32. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 2005, 4 (5), 366-377.
33. C. Johnson, J. Vaughey, M. Thackeray, T. Sarakonsri, S. Hackney, L. Fransson, K. Edström, J. O. Thomas, Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries. Electrochem. Commun. 2000, 2 (8), 595-600.
34. S.-C. Han, H.-S. Kim, M.-S. Song, J.-H. Kim, H.-J. Ahn, J.-Y. Lee, Nickel sulfide synthesized by ball milling as an attractive cathode material for rechargeable lithium batteries. J. Alloy. Compd. 2003, 351 (1), 273-278.
35. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 2011, 47 (14), 4252-4254.
36. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4 (8), 2682-2699.
37. R. Apostolova, I. Talyosef, J. Grinblat, B. Markovsky, D. Aurbach, Study of electrolytic cobalt sulfide Co9S8 as an electrode material in lithium accumulator prototypes. Russian Journal of Electrochemistry 2009, 45 (3), 311-319.
38. B. T. Hang, T. Ohnishi, M. Osada, X. Xu, K. Takada, T. Sasaki, Lithium silicon sulfide as an anode material in all-solid-state lithium batteries. J. Power Sources 2010, 195 (10), 3323-3327.
39. H. Senoh, T. Takeuchi, H. Kageyama, H. Sakaebe, M. Yao, K. Nakanishi, T. Ohta, T. Sakai, K. Yasuda, Electrochemical characteristics of aluminum sulfide for use in lithium secondary batteries. J. Power Sources 2010, 195 (24), 8327-8330.
40. Y. Shi, Y. Wan, R. Liu, B. Tu, D. Zhao, Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 2007, 129 (30), 9522-9531.
41. X.-L. Gou, J. Chen, P.-W. Shen, Synthesis, characterization and application of SnS x (x= 1, 2) nanoparticles. Mater. Chem. Phys. 2005, 93 (2), 557-566.
42. H. Yang, X. Su, A. Tang, Microwave synthesis of nanocrystalline Sb2S3 and its electrochemical properties. Mater. Res. Bull. 2007, 42 (7), 1357-1363.
43. C. Marino, A. Debenedetti, B. Fraisse, F. Favier, L. Monconduit, Activated-phosphorus as new electrode material for Li-ion batteries. Electrochem. Commun. 2011, 13 (4), 346-349.
44. L. Croguennec, M. R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137 (9), 3140-3156.
45. M. Nair, Y. Pena, J. Campos, V. Garcia, P. Nair, Chemically deposited Sb2S3 and Sb2S3‐CuS thin films. J. Electrochem. Soc. 1998, 145 (6), 2113-2120.
46. O. Savadogo, K. C. Mandal, Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energ. Mater. Sol. Cells 1992, 26 (1), 117-136.
47. K. Xiao, Q.-Z. Xu, K.-H. Ye, Z.-Q. Liu, L.-M. Fu, N. Li, Y.-B. Chen, Y.-Z. Su, Facile hydrothermal synthesis of Sb2S3 nanorods and their magnetic and electrochemical properties. ECS Solid State Letters 2013, 2 (6), P51-P54.
48. X. Zhou, L. Bai, J. Yan, S. He, Z. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochim. Acta 2013, 108, 17-21.
49. X. Zhou, S. Hua, L. Bai, D. Yu, Synthesis and electrochemical performance of hierarchical Sb2S3 nanorod-bundles for lithium-ion batteries. Journal of Electrochemical Science and Engineering 2014, 4 (2), 45-53.
50. P. V. Prikhodchenko, J. Gun, S. Sladkevich, A. A. Mikhaylov, O. Lev, Y. Y. Tay, S. K. Batabyal, D. Y. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@ graphene for a superior lithium battery anode. Chem. Mater. 2012, 24 (24), 4750-4757.
51. Y. Denis, H. E. Hoster, S. K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Scientific reports 2014, 4.
52. J. Ma, X. Duan, J. Lian, T. Kim, P. Peng, X. Liu, Z. Liu, H. Li, W. Zheng, Sb2S3 with various nanostructures: controllable synthesis, formation mechanism, and electrochemical performance toward lithium storage. Chem.-Eur. J. 2010, 16 (44), 13210-13217.
53. G. G. Kumar, K. Reddy, K. S. Nahm, N. Angulakshmi, A. M. Stephan, Synthesis and electrochemical properties of SnS as possible anode material for lithium batteries. J. Phys. Chem. Solids 2012, 73 (9), 1187-1190.
54. T. Jiang, G. A. Ozin, New directions in tin sulfide materials chemistry. J. Mater. Chem. 1998, 8 (5), 1099-1108.
55. A. Ghazali, Z. Zainal, M. Zobir Hussein, A. Kassim, Cathodic electrodeposition of SnS in the presence of EDTA in aqueous media. Sol. Energ. Mater. Sol. Cells 1998, 55 (3), 237-249.
56. L. A. Burton, D. Colombara, R. D. Abellon, F. C. Grozema, L. M. Peter, T. J. Savenije, G. Dennler, A. Walsh, Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chem. Mater. 2013, 25 (24), 4908-4916.
57. D. Lei, M. Zhang, B. Qu, J. Ma, Q. Li, L. Chen, B. Lu, T. Wang, Hierarchical tin-based microspheres: Solvothermal synthesis, chemical conversion, mechanism and application in lithium ion batteries. Electrochim. Acta 2013, 106, 386-391.
58. Y. Li, J. Tu, H. Wu, Y. Yuan, D. Shi, Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries. Materials Science and Engineering: B 2006, 128 (1), 75-79.
59. Y. Li, J. P. Tu, X. H. Huang, H. M. Wu, Y. F. Yuan, Nanoscale SnS with and without carbon-coatings as an anode material for lithium ion batteries. Electrochim. Acta 2006, 52 (3), 1383-1389.
60. J. Zhu, D. Wang, T. Liu, Preparation of tin sulfide–graphene composites with enhanced lithium storage. Appl. Surf. Sci. 2013, 282, 947-953.
61. Y. Zhang, J. Lu, S. Shen, H. Xu, Q. Wang, Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47 (18), 5226-5228.
62. H.-C. Tao, X.-L. Yang, L.-L. Zhang, S.-B. Ni, One-step in situ synthesis of SnS/graphene nanocomposite with enhanced electrochemical performance for lithium ion batteries. J. Electroanal. Chem. 2014, 728, 134-139.
63. J.-G. Kang, J.-G. Park, D.-W. Kim, Superior rate capabilities of SnS nanosheet electrodes for Li ion batteries. Electrochem. Commun. 2010, 12 (2), 307-310.
64. D. D. Vaughn, O. D. Hentz, S. Chen, D. Wang, R. E. Schaak, Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 2012, 48 (45), 5608-5610.
65. J. Lu, C. Nan, L. Li, Q. Peng, Y. Li, Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6 (1), 55-64.
66. Y. Li, J. Tu, X. Huang, H. Wu, Y. Yuan, Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries. Electrochem. Commun. 2007, 9 (1), 49-53.
67. J. Cai, Z. Li, P. K. Shen, Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interface 2012, 4 (8), 4093-4098.
68. N. Ali, S. Hussain, Y. Khan, N. Ahmad, M. Iqbal, S. M. Abbas, Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application. Mater. Lett. 2013, 100, 148-151.
69. H. Dittrich, A. Bieniok, U. Brendel, M. Grodzicki, D. Topa, Sulfosalts—A new class of compound semiconductors for photovoltaic applications. Thin Solid Films 2007, 515 (15), 5745-5750.
70. J. Li, Q. Ru, S. Hu, D. Sun, B. Zhang, X. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 2013, 113 (0), 505-513.
71. O. Mao, R. Dunlap, J. Dahn, Mechanically alloyed Sn‐Fe (‐C) powders as anode materials for Li‐Ion batteries: I. the Sn2Fe‐C system. J. Electrochem. Soc. 1999, 146 (2), 405-413.
72. L. Fransson, E. Nordström, K. Edström, L. Häggström, J. Vaughey, M. Thackeray, Structural transformations in lithiated η′-Cu6Sn5 Electrodes probed by in situ mössbauer spectroscopy and X-ray diffraction. J. Electrochem. Soc. 2002, 149 (6), A736-A742.
73. Z. Wang, W. Tian, X. Li, Synthesis and electrochemistry properties of Sn–Sb ultrafine particles as anode of lithium-ion batteries. J. Alloy. Compd. 2007, 439 (1), 350-354.
74. H. Guo, H. Zhao, X. Jia, W. Qiu, F. Cui, Synthesis and electrochemical characteristics of Sn–Sb–Ni alloy composite anode for Li-ion rechargeable batteries. Mater. Res. Bull. 2007, 42 (5), 836-843.
75. Z. Wang, W. Tian, X. Liu, R. Yang, X. Li, Synthesis and electrochemical performances of amorphous carbon-coated Sn–Sb particles as anode material for lithium-ion batteries. J. Solid State Chem. 2007, 180 (12), 3360-3365.
76. J. Li, Q. Ru, S. Hu, D. Sun, B. Zhang, X. Hou, Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes. Electrochim. Acta 2013, 113, 505-513.
77. W. X. Chen, J. Y. Lee, Z. Liu, The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 2003, 41 (5), 959-966.
78. X. Niu, H. Zhou, Z. Li, X. Shan, X. Xia, Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J. Alloy. Compd. 2015, 620, 308-314.
79. S. Chen, P. Chen, M. Wu, D. Pan, Y. Wang, Graphene supported Sn–Sb@ carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12 (10), 1302-1306.
80. T. Tabuchi, N. Hochgatterer, Z. Ogumi, M. Winter, Ternary Sn–Sb–Co alloy film as new negative electrode for lithium-ion cells. J. Power Sources 2009, 188 (2), 552-557.
81. C. Nithya, T. Sowmiya, K. V. Baskar, N. Selvaganeshan, T. Kalaiyarasi, S. Gopukumar, High capacity SnxSbyCuz composite anodes for lithium ion batteries. Solid State Sci. 2013, 19, 144-149.
82. R. Yang, J. Huang, W. Zhao, W. Lai, X. Zhang, J. Zheng, X. Li, Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J. Power Sources 2010, 195 (19), 6811-6816.
83. G. Zhu, P. Liu, J. Zhou, X. Bian, X. Wang, J. Li, B. Chen, Effect of mixed solvent on the morphologies of nanostructured Bi2S3 prepared by solvothermal synthesis. Mater. Lett. 2008, 62 (15), 2335-2338.
84. B. Ingham, M. F. Toney, 1 - X-ray diffraction for characterizing metallic films. In Metallic Films for Electronic, Optical and Magnetic Applications, Barmak, K.; Coffey, K., Eds. Woodhead Publishing: 2014; pp 3-38.
85. P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copper-thiourea containing precursors; anionic (Cl−, NO3−, SO42−) influence on the product stoichiometry. Inorg. Chem. 2011, 50 (7), 3065-3070.
86. T.-L. Wu, 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究. 2014.
87. X. Niu, H. Zhou, Z. Li, X. Shan, X. Xia, Carbon-coated SnSb nanoparticles dispersed in reticular structured nanofibers for lithium-ion battery anodes. J. Alloy. Compd. 2015, 620 (0), 308-314.
|