博碩士論文 102223037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.139.69.95
姓名 吳幼琦(Yu-Qi Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 合成應用於溶液製程高分子太陽能電池的含苯並 [1,2-b:4,5-b’]二噻吩基共聚物
(Synthesis of Benzo[1,2-b:4,5-b′]dithiophene-Based Copolymers for Solution Processed Polymer Solar Cells)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的發展,石化燃料蘊藏量日益減少,尋找其他符合經濟效益的替代能源,是目前非常重要的議題。高分子太陽能電池(PSCs)因可以用塗佈或Roll-to-Roll方式製作,可大面積化以及可撓曲性,製程簡單、成本低廉,因而受到廣泛的注意,D-A (D = Donor; A = Acceptor)共聚物一般具有較高的光吸收係數,且其光電性質可藉由改變D或A的結構(或強度)而調整,常用於作為有機太陽能電池主動層中的P-型材料。本篇論文設計以((2-ethylhexyl)oxy) Benzo[1,2-b:4,5- b′]-Dithiophene (BDT) Donor單元搭配(4-(hexyloxy)phenyl)-Quino- xaline (Q)或(4(hexyloxy)phenyl)Pyrido[3,4-b]pyrazine (P) Acceptor單元,並加入了Thiophene (T)或3-Hexylthiophene (RT)進行結構修飾,合成出可作為PSCs主動層P-型材料的六個共聚物,PBDTQ、PTBDTQ、PRTBDTQ、PBDTP、PTBDTP以及PRTBDTP,探討不同Acceptor單元與主鏈修飾對於共聚物光電性質的影響,並搭配N-型材料奈米碳球PC71BM混摻為主動層,組裝成高分子太陽能電池並測試元件光電表現,其中以PTBDTP作為主動層所組裝的反相太陽能電池具有最高光電轉換效率,為4.40%。
摘要(英) The gradually decrease in the fossil fuel reserves pushes the scientists to search for alternative cost-effective energy resources. Polymer solar cell (PSC) which can be fabricated by spin-coating or roll-to-roll processes is one of the potential further green energy resource due to some advantages such as light-weight, mechanical flexibility, simple processing, low cost, and large-area device can be fabricated by roll-to-roll method. D-A (D: Donor; A: Acceptor) copolymers which generally having high absorption coefficient and adjustable (by donor and acceptor units) optical properties, have been widely used as a P-type semiconductors in the active layer of PSCs. In this thesis we designed and synthesized six new D-A copolymers including PBDTQ、PTBDTQ、PRTBDTQ、PBDTP、PTBDTP and PRTBDTP. These copolymers were synthesized by stille coupling of ((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]- dithiophene (BDT) donor unit with (4-(hexyloxy)phenyl)quinoxaline (Q) or (4(hexyloxy)phenyl)pyrido[3,4-b]pyrazine (P) acceptor unit. Furthermore, thiophene (T) or 3-hexylthiophene (RT) was also introdued in the main chain to adjust the optical property of the copolymers. The effects of the acceptor unit and side chain modifications on the optoelectronic properties of copolymers were investigated. The bulk heterojunction (BHJ) polymer solar cells based on these copolymers fabricated via solution process were also explored. When PC71BM was used as a N-type material, PTBDTP based inverted BHJ device has the maximum efficiency of 4.40%.
關鍵字(中) ★ 高分子太陽能電池
★ P-型材料
★ 塊材異質接面
關鍵字(英) ★ Polymer solar cell
★ P-type semiconductors
★ Bulk Heterojunction
論文目次 第1 章 緒論 1
1-1、 前言 1
1-2、 有機太陽能電池的發展歷史 2
1-3、 高分子太陽能電池的工作原理 9
1-4、 太陽能電池的光伏參數 11
1-5、 高分子太陽能電池相關文獻探討 14
1-6、 研究動機 25
第2 章 實驗部分 29
2-1、 實驗藥品 29
2-2、 共聚物與其中間產物的合成流程圖 33
2-2-1. (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane) (Ditin-DiEH-BDT)之合成 33
2-2-2. ((4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(trimethylstannane) (Ditin-DiT-DiEH-BDT)之合成 34
2-2-3. ((4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-
diyl)bis(4-hexylthiophene-5,2-diyl))bis(trimethylstannane) (Ditin-DiRT-DiEH-BDT)之合成 35
2-2-4. 5,8-dibromo-2,3-bis(4-(hexyloxy)phenyl)quinoxaline (DiBr-DBQ)之合成 36
2-2-5. 5,8-dibromo-2,3-bis(4-(hexyloxy)phenyl)pyrido[3,4-b]pyrazine (DiBr-DBP)之合成 37
2-2-6. 共聚物之聚合反應─密閉式微波加熱 38
2-2-7. 共聚物之聚合反應─傳統加熱 39
2-3、 合成之反應物、中間體及最後所得共聚物之結構、命名與簡稱 41
2-4、 組裝BHJ 元件之相關材料 46
2-5、 合成步驟 47
2-5-1. Thiophene-3-carbonyl chloride 的合成 47
2-5-2. N,N-diethylthiophene-3-carboxamide 的合成 47
2-5-3. Benzo[1,2-b:4,5-b′]dithiophene-4,8-dione 的合成 48
2-5-4. 4,8-Bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene的合成 49
2-5-5.(4,8-Bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane)的合成 51
2-5-6. 4,8-Bis((2-ethylhexyl)oxy)-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene 的合成 52
2-5-7. ((4,8-Bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(thiophene-5,2-diyl))bis(trimethylstannane)的合成 53
2-5-8. 4,8-Bis((2-ethylhexyl)oxy)-2,6-bis(3-hexylthiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene 的合成 54
2-5-9. ((4,8-Bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(4-hexylthiophene-5,2-diyl))bis(trimethylstannane)的合成 55
2-5-10. 1,2-Bis(4-hydroxyphenyl)ethane-1,2-dione 的合成 56
2-5-11. 1,2-Bis(4-(hexyloxy)phenyl)ethane-1,2-dione 的合成 57
2-5-12. 4,7-Dibromobenzo[1,2,5]thiadiazole 的合成 58
2-5-13. 3,6-Dibromobenzene-1,2-diamine 的合成 59
2-5-14. 5,8-Dibromo-2,3-bis(4-(hexyloxy)phenyl)quinoxaline的合成 60
2-5-15. 2,5-Dibromopyridine-3,4-diamine 的合成 61
2-5-16. 5,8-Dibromo-2,3-bis(4-(hexyloxy)phenyl)pyrido[3,4-b]-pyrazine 的合成 62
2-5-17. Poly{4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithio- phene-alt-2,3-bis[4-(hexyloxy)phenyl]quinoxaline}的合成─密閉式微波加熱 63
2-5-18. Poly{2,6-di-2-thienyl-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]quinoxaline}的合成─密閉式微波加熱 64
2-5-19. Poly{2,6-bis(3-hexylthiophen-2-yl)-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]quinox-aline}的合成─密閉式微波加熱 65
2-5-20. Poly{4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]quinoxaline}的合成─傳統加熱 66
2-5-21. Poly{2,6-di-2-thienyl-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]quinoxaline}的合成─傳統加熱 68
2-5-22. Poly{2,6-bis(3-hexylthiophen-2-yl)-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]quinoxaline}的合成─傳統加熱 69
2-5-23. Poly{4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]pyrido[3,4-b]pyrazine}的合成─傳統加熱 70
2-5-24. Poly{2,6-di-2-thienyl-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]pyrido[3,4-b]pyrazine}的合成─傳統加熱 71
2-5-25. Poly{2,6-bis(3-hexylthiophen-2-yl)-4,8-bis(2’-ethylhexyloxy)-benzo[1,2-b:4,5-b’]dithiophene-alt-2,3-bis[4-(hexyloxy)phenyl]pyrido[3,4-b]pyrazine}的合成─傳統加熱 72
2-6、 共聚物純化方式 73
2-7、 儀器分析與樣品製備 74
2-7-1. 核磁共振光譜(Bruker 300 MHz Nuclear Magnetic Resonance Spectrometer, NMR) 74
2-7-2. 紫外光/可見光/近紅外光吸收光譜(HITACHI U-4100 Spectrophotometer) 75
2-7-3. 分子螢光光譜(HITACHI F-7000 Fluorescence Spectrophotometer) 76
2-7-4. 膠體滲透層析分析(HEWLETT PACKARD Series1100/Agilent 1100 Series, Gel Permeation Chromatography, GPC) 77
2-7-5. 熱重分析(TA Instruments TGA Q500) 79
2-7-6. 示差掃描熱分析(TA Instruments DSC Q2000) 79
2-7-7. 電化學循環伏安測試(AutoLab Potentiostat/Galvanostat PGSTAT30, CV) 80
2-7-8. 穿透式小角度X 光繞射分析(Rigaku-NANO-Viewer Diffractometer, GIXRD) 81
2-7-9. 塊材異質接面結構(BHJ)太陽能電池元件的組裝 82
2-7-10. 元件光伏參數的量測步驟 (Enlitech SS-F5-3A) 85
第3 章 結果與討論 86
3-1、 紫外光/可見光吸收光譜 86
3-2、 分子螢光光譜 91
3-3、 共聚物的分子量 93
3-4、 共聚物的熱分解溫度測定 97
3-5、 共聚物的玻璃轉換溫度測定 98
3-6、 電化學循環伏安測定共聚物的氧化還原電位 102
3-7、 共聚物所組裝的正相塊材異質接面結構(Regular Bulk Heterojunction, R-BHJ)太陽能電池元件的效率 106
3-8、 PTBDTQ 及PTBDTP 所組裝的反相塊材異質接面結構(Inverted Bulk Heterojunction, I-BHJ)太陽能電池元件的效率 109
第4 章 結論 116
參考文獻 117
附錄 121
參考文獻 [1] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. “Solar Cell Efficiency Tables (Version 43)”, Prog. Photovolt. Res. Appl. 2014, 22, 1-9.
[2] Ghosh, A. K.; Feng, T. “Merocyanine Organic Solar Cells”, J. Appl, Phys. 1978, 49, 5982-5989.
[3] Onsager, L. “Initial Recombination of Ions”, Phys. Rev. 1938, 54, 554-557.
[4] Tang, C. W. “Two‐Layer Organic Photovoltaic Cell”, Appl. Phy. Lett. 1986, 48, 183-185.
[5] Yu, G.; Zhang, C.; Heeger, A. J. ”Dual-Function Semiconducting Polymer Devices: Light-Emitting and Photodetecting Diodes”, Appl. Phys. Lett. 1994, 64, 1540-1542.
[6] Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. “Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C- 60 Heterojunction Photovoltaic Cell”, Appl. Phys. Lett. 1996, 68, 3120-3122.
[7] Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science. 1995, 270, 1789-1791.
[8] Forrest, S. R. “Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques”, Chem. Rev. 1997, 97, 1793-1896.
[9] Miranda, P. B.; Moses, D.; Heeger, A. J. “Ultrafast Photogeneration of Charged Polarons in Conjugated Polymers”, Phys. Rev. B 2001, 64, 081201-1-081201-4.
[10] Armstrong, N. R.; Wang, W.; Alloway, D. M.; Placencia, D.; Ratcliff, E.; Brumbach, M. “Organic/Organic′ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices”, Macromol. Rapid Commun. 2009, 30 , 717-731.
[11] Germack, D. S.; Chan, C. K.; Hamadani, B. H.; Richter, L. J.; Fischer, D. A.; Gundlach, D. J.; DeLongchamp, D. M. “Substrate-Dependent Interface Composition and Charge Transport in Films for Organic Photovoltaics”, Appl. Phys. Lett. 2009, 94, 233303-1-233303-3.
[12] Xu, Z.; Chen, L.-M.; Yang, G.; Huang, C.-H.; Hou, J.; Wu, Y.; Li, G.; Hsu, C.-S.; Yang, Y. “Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells”, Adv. Funct. Mater. 2009, 19, 1227-1234.
[13] Yao, Y.; Hou, J.; Xu, Z.; Li, G.; Yang, Y. “Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells”, Adv. Funct. Mater. 2008, 18, 1783-1789.
[14] Hau, S. K.; Yip, H.-L.; Baek, N. S.; Zou, J.; O’Malley, K.; Jen, A. K.-Y. “Air-Stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer”, Appl. Phys. Lett. 2008, 92, 253301-1-253301-3.
[15] Lee, T. W.; Noh, T.; Choi, B. K.; Kim, M. S.; Shin, D. W.; Kido, J. “High-Efficiency Stacked White Organic Light-Emitting Diodes”, J. Appl. Phys. Lett. 2008, 92, 043301-1-043301-3.
[16] Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q. “A Review of Polymer Multijunction Solar Cells”, Energy Environ. Sci. 2010, 3, 867–883.
[17] Li, G.; Zhu, R.; Yang, Y. “Polymer Solar Cells”, Nature Photonics. 2012, 6, 153-161.
[18] Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 2006, 18, 789–794.
[19] Cheng, Y. J.; Yang, S. H.; Hsu, C. S. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868–5923.
[20] Cheng, Y.; Yang, S.; Hsu, C. “Synthesis of Conjugated Polymers for Organic Solar Cell Applications”, Chem. Rev. 2009, 109, 5868-5923.
[21] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L.
“For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%”, Adv. Mater. 2010, 22, E135–E138.
[22] Cabanetos, C.; El Labban, A.; Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Fréchet, J. M. J.; McGehee, M. D.; Beaujuge, P. M. “Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene−Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance”, J. Am. Chem. Soc. 2013, 135, 4656−4659.
[23] Duan, R.; Ye, L.; Guo, X.; Huang, Y.; Wang, P.; Zhang, S.; Zhang, J.; Huo, L.; Hou, J. “Application of Two-Dimensional Conjugated Benzo[1,2-b:4,5- b′]dithiophene in Quinoxaline-Based Photovoltaic Polymers”, Macromolecules. 2012, 45, 3032−3038.
[24] Zhang, M.; Guo, X.; Ma, W.; Zhang, S.; Huo, L.; Ade, H.; Hou, J. “An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells”, Adv. Mater. 2014, 26, 2089–2095.
[25] Liao, S. H.; Jhuo, H. J.; Yeh, P. N.; Cheng, Y. S.; Li, Y. L.; Lee, Y. H.; Sharma, S.; Chen, S. A. “Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer”, Scientific Reports, 2014 ,4, 6813-1-6813-7.
[26] Jiang, J. M.; Lin, H. K.; Lin, Y. C.; Chen, H. C.; Lan, S. C.; Chang, C. K.; Wei, K. H. “Side Chain Structure Affects the Photovoltaic Performance of TwoDimensional Conjugated Polymers”, Macromolecules. 2014, 47, 70−78.
[27] Zhang, X.; Shim, J. W.; Tiwari, S. P.; Zhang, Q.; Norton, J. E.; Wu, P. T.; Barlow, S.; Jenekhe, S. A.; Kippelen, B.; Bredas, J. L.; Marder, S. R. “Dithienopyrrole–Quinoxaline/Pyridopyrazine Donor–Acceptor Polymers: Synthesis and Electrochemical, Optical, Charge-Transport, and Photovoltaic Properties”, J. Mater. Chem. 2011, 21, 4971-4982.
[28] Chen, H. C.; Chen, Y. H.; Liu, C. C.; Chien, Y. C.; Chou, S. W.; Chou, P. T. “Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%”, Chem. Mater. 2012, 24, 4766−4772.
[29] Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. “Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells”, J. Am. Chem. Soc. 2013, 135, 1806−1815.
[30] Wu, J. S.; Cheng, S. W.; Cheng, Y. J.; Hsu, C. S. “Donor–Acceptor Conjugated Polymers Based on Multifused Ladder-Type Arenes for Organic Solar Cells”, Chem. Soc. Rev. 2015, 44, 1113-1154.
[31] He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells”, Adv. Mater. 2011, 23, 4636–4643.
[32] Milstein, D.; Stille, J. K. “A General, Selective, and Facile Method for Ketone Synthesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium”, J. Am. Chem. Soc. 1978, 100, 3636-3638.
[33] Santos, L. S.; Rosso, G. B.; Pilli, R. A.; Eberlin, M. N. “The Mechanism of the Stille Reaction Investigated by Electrospray Ionization Mass Spectrometry”, J. Org. Chem. 2007, 72, 5809-5812.
[34] Carsten, B.; He, F.; Son, H. J.; Xu, T.; Yu, L. “Stille Polycondensation for Synthesis of Functional Materials”, Chem. Rev. 2011, 111, 1493–1528.
[35] Bao, Z.; Chan, W.; Yu, L. “Synthesis of Conjugated Polymer by the Stille Coupling Reaction”, Chem. Mater. 1993, 5, 2-3.
[36] Osswald, T. A.; Baur, E.; Brinkmann, S.; Oberbach, K.; Schmachtenberg, E. “International Plastics Handbook: 4th edition”, Hanser Gardner Pubilcations, Cincinatti, 2006.
[37] 國立臺灣大學化學系名譽教授蔡蘊明。《完美的聚合物晶體》, http://highscope.ch.ntu.edu.tw/wordpress/?p=52090
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2015-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明