博碩士論文 102324062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.119.213.82
姓名 張品竑(Ping-Hung Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高分子模板誘導奈米金柱陣列及其應用
(Polymer Template-Assisted Gold nanorod arrays and applications)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於奈米金柱具有獨特的光學性質與良好的加工性,有望成為新一代高效能的奈米級的光學設備。此外,奈米金柱陣列的表面電漿共振效應在光學感應器上具有極大的潛力。過去奈米金柱的粒徑主要是利用TEM做分析,但TEM量測屬於小範圍上的分析,若利用小角度X光散射(SAXS)去分析,可以得到整體奈米金柱的粒徑的平均值。因此本研究主旨在以小角度X光散射(SAXS)去鑑定合成的奈米金柱,同時也能夠以此去辨別高分子模板控制奈米金柱陣列有序性。研究內容主要可以區分成兩個部分:奈米粒子的合成鑑定與高分子模板控制陣列。
1.奈米粒子合成鑑定:我們利用單相、雙相界面活性劑以晶種成長法合成兩種不同尺寸的奈米金柱。首次利用小角度X光散射儀做形貌上的分析,並與穿透式電子顯微鏡、紫外光可見光分光光譜儀兩者結果做比較。
2.高分子模板控制陣列:首次利用雙團鏈共聚高分子結構的模板去控制mPEG改質的奈米金柱。同時也利用PDMS模板以壓印乾燥的方式去控制奈米金柱的陣列。
摘要(英) Due to nanorods of noble metals unique optical properties and facile processability, they have been highly potential and effective nanoscale optical devices nowadays. Plasmon coupling between nanorods in an array configuration shows great potential for optical sensing. In the past, size of AuNRs was identified with TEM which indicated local information. However, small-angle X-ray scattering (SAXS) can be used to obtain average of entire size of AuNRs. We aim to identify AuNRs and ordering arrays of AuNRs by SAXS. Our research includes two different parts as follows:
1.Identify synthesis of gold nanorods:We synthesized AuNRs with different sizes by single and binary surfactant seeds-mediated growth methods. We were first group to estimate the size of AuNRs by small-angle X-ray scattering. Also, we compare it with Transmission electron microscopy and ultraviolet–visible spectroscopy.
2.Template-Assisted Gold nanorod arrays with polymer template:We were first group to fabricate an array of AuNRs with diblock copolymer(BCP)template by utilizing electrostatic interactions between mPEG modify rods and an anionic surface. Moreover, we also controlled drying of AuNRs between a smooth surface and a PDMS microtextured stamp.
關鍵字(中) ★ 奈米金柱
★ 自組裝
★ 小角度
關鍵字(英) ★ Gold nanorods
★ self-assemble
★ Small-Angle X-ray Scattering (SAXS)
論文目次 摘要........................................i
Abstract....................................ii
致謝........................................iv
目錄........................................v
圖目錄......................................viii
表目錄......................................xii
第一章 簡介................................1
1-1奈米材料的基本性質.......................1
1-2 金奈米粒子的合成........................3
1-2-1 金奈米粒子的發展......................3
1-2-2 一維奈米金柱的合成....................4
1-3 表面電漿子的介紹........................6
1-3-1 電漿子的發展..........................6
1-3-2 奈米粒子的局域表面電漿共振(LSPR)....7
1-4 金奈米粒子的自組裝......................9
1-4-1 溶液相奈米粒子的自組裝................9
1-4-2 高分子誘導自組裝......................10
1-4-3 揮發誘導自組裝........................11
1-4-4 模板吸附..............................14
1-5 金奈米粒子的應用........................15
1-6 研究背景與動機..........................17
第二章 實驗方法............................18
2-1 奈米金柱合成............................18
2-1-1 小尺寸的奈米金柱......................18
2-1-2 大尺寸的奈米金柱......................20
2-1-3實驗儀器...............................22
2-2高分子誘導溶液中奈米粒子的自組裝.........23
2-2-1實驗材料...............................23
2-2-2溫度效應...............................23
2-2-3高分子濃度效應.........................23
2-2-4高分子效應.............................23
2-3 高分子模板吸附奈米粒子..................24
2-3-1 奈米金柱改質..........................24
2-3-2 正電高分子模板製備....................27
2-3-3 模板吸附奈米金柱[53]..................28
2-4 揮發乾燥控制奈米陣列....................29
2-4-1 實驗材料..............................29
2-4-2 PDMS模板壓印乾燥......................29
2-5 儀器分析................................31
2-5-1 光學顯微鏡(Optical Microscopy, OM)....31
2-5-2 場發射掃描式電子顯微鏡(Field Emmision Scanning Electron Microscope, FESEM)..........................31
2-5-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) ............................................33
2-5-4 原子力顯微鏡(Atomic Force Microscopy, AFM) 33
2-5-5小角度X光散射(Small-Angle X-ray Scattering, SAXS)35
2-5-6 紫外光可見光分光光譜儀(Ultraviolet–visible spectroscopy, UV-vis).....................................35
第三章 結果與討論..........................37
3-1奈米金柱的製備...........................37
3-1-1奈米金柱的合成機制.....................37
3-1-2奈米金柱的鑑定.........................40
3-1-3奈米金柱的純化.........................43
3-2高分子誘導溶液中奈米粒子的自組裝.........45
3-3高分子模板吸附奈米粒子...................48
3-3-1奈米金柱的改質與鑑定...................48
3-3-2 高分子模板的製作與吸附................55
3-4揮發乾燥控制奈米陣列.....................57
3-4-1 PDMS模板壓印乾燥......................57
第四章 結論................................60
參考文獻....................................62
附錄........................................73
參考文獻 [1]K. Weintraub, “Biomedicine: The new gold standard”, Nature 2013, 495, S14–S16
[2]A. Sanchez-Iglesias, M. Grzelczak, J. Perez-Juste, L. M. Liz-Marzan, “Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods”, Angew. Chem. Int. Ed. 2010, 49, 9985–9989
[3]T. K. Sau, C. J. Murphy, “Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution”, J. Am. Chem. Soc. 2004, 126, 8648–8649
[4]L. Gou, C. J. Murphy, “Fine-Tuning the Shape of Gold Nanorods” , Chem. Mater. 2005, 17, 3668–3672
[5]C. A. Foss Jr., G. L. Hornyak, J. A. Stockert, C. R. Martin, “Optical properties of composite membranes containing arrays of nanoscopic gold cylinders”, J. Phys. Chem. 1992, 96, 7497–7499
[6]C.R. Martin, “Nanomaterials: a membrane-based synthetic approach”, Science 1994, 266, 1961
[7]C.R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chem. Mater. 1996, 8, 1739–1746
[8]B. M. I. van der Zande, M. R. Böhmer, L. G. J. Fokkink, C. Schönenberger, “Colloidal Dispersions of Gold Rods:  Synthesis and Optical Properties”, Langmuir 2000, 16, 451–458
[9]V. M. Cepak, C. R. Martin, “Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents”, J. Phys. Chem. B 1998, 102, 9985–9990
[10]J.C. Hulteen, C.R. Martin, “A general template-based method for the preparation of nanomaterials”, J. Mater. Chem. 1997, 7, 1075–1087
[11]K.B. Jirage, J.C. Hulteen, C.R. Martin, “Nanotubule-Based Molecular-Filtration Membranes”, Science 1997, 278, 655–658
[12]Y. Ying, S. S. Chang, C. L. Lee, C. R. Chris Wang, ” Gold Nanorods: Electrochemical Synthesis and Optical Properties”, J. Phys. Chem. B 1997, 101, 6661–6664
[13]S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. Chris Wang, ” The Shape Transition of Gold Nanorods”, Langmuir 1999, 15, 701–709
[14]N.R. Jana, L. Gearheart, C. J. Murphy, “Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template”, Chem. Mater. 2001, 13, 2313–2322
[15]N.R. Jana, L. Gearheart, C. J. Murphy, “Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles”, Langmuir 2001, 17, 6782–6786
[16]B.D. Busbee, S.O. Obare, C.J. Murphy, “An Improved Synthesis of High‐Aspect‐Ratio Gold Nanorods”, Adv. Mater. 2003, 15, 414–416
[17]B. Nikoobakht, M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method”, Chem. Mater. 2003, 15, 1957–1962
[18]J. Perez-Juste, L. M. Liz-Marzan, S. Carnie, “Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions”, Adv. Funct. Mater. 2004, 14, 571–579
[19]J. Yanga, J. C. Wua, Y. C. Wua, J. K. Wang, C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: A simple relationship”, Chemical Physics Letters 2005, 416, 215–219
[20]R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractived grating spectrum”, Philos. Mag. 1902, 4, 396–402
[21]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 1941, 31, 213–222
[22]A. Hessel, A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings”, Appl. Opt. 1965, 4, 1275–1297
[23]H. Raether, “Surface Plasmons, Springer Tracts in Modern Physics (4th ed.) “, Springer 1988
[24]A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Phys. Reports 2005, 408, 131–314
[25]S. Jayabal, A. Pandikumar, H. N. Lim, R. Ramaraj, T. Sun, N. M. Huang, “A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions” , Analyst 2015, 140, 2540–2555
[26]C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, Wiley 1983
[27]S. A. Maier, H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures”, J. Appl. Phys. 2005, 98, 011101
[28]B. Yan, S.V. Boriskina, B. M. Reinhard, “Optimizing Gold Nanoparticle Cluster Configurations (n≤7) for Array Applications”, J. Phys. Chem. C 2011, 115, 4578–4583
[29]K. G. Thomas, S. Barazzouk, B. I. Ipe, S. T. Shibu Joseph, P. V. Kamat, “Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods”, J. Phys. Chem. B 2004, 108, 13066–13068
[30]D. Nepal, K. Park, R. A. Vaia, “High-Yield Assembly of Soluble and Stable Gold Nanorod Pairs for High-Temperature Plasmonics”, Small 2012, 8, 1013–1020
[31]L. Zhong, X. Zhou, S. Bao, Y. Shi, Y. Wang, S. Hong, Y. Huang, X. Wang, Z. Xie, Q. Zhang, “Rational design and SERS properties of side-by-side, end-to-end and end-to-side assemblies of Au nanorods”, J. Mater. Chem. 2011, 21, 14448–14455
[32]B. M. I. van der Zande, L. Pagès, R. A. M. Hikmet, A. van Blaaderen, “Optical Properties of Aligned Rod-Shaped Gold Particles Dispersed in Poly(vinyl alcohol) Films”, J. Phys. Chem. B 1999, 103, 5761–5767
[33]J. Perez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, L. M. Liz-Marzan, “Optical Control and Pattern of Gold-Nanorod- Poly(vinyl alcohol) Nanocomposite Films”, Adv. Funct. Mater. 2005, 15, 1065–1071
[34]D. He, B. Hu, Q. F. Yao, K. Wang, S. H. Yu, “Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles”, ACS Nano 2009, 3, 3993–4002
[35]C. L. Zhang, K. P. Lv, H. P. Cong, S. H. Yu, “Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning”, Small 2012, 8, 648–653
[36]C. L. Zhang, K. P. Lv, H. T. Huang, H. P. Cong, S. H. Yu, “Co-assembly of Au nanorods with Ag nanowires within polymer nanofiber matrix for enhanced SERS property by electrospinning”, Nanoscale 2012, 4, 5348–5355
[37]Q. Dai, C. T. Rettner, B. Davis, J. Cheng, A. Nelson, “Topographically directed self-assembly of goldnanoparticles”, J. Mater. Chem. 2011, 21, 16863–16865
[38]Q. Dai, C. T. Rettner, B. Davis, J. Cheng, A. Nelson, “Topographically directed self-assembly of goldnanoparticles”, J. Mater. Chem. 2011, 21, 16863–16865
[39]J. Chen, W. S. Liao, X. Chen, T. Yang, S. E. Wark ,D. H. Son, J. D. Batteas, P. S. Cremer, “Evaporation-Induced Assembly of Quantum Dots into Nanorings”, ACS Nano 2009, 3, 173–180
[40]V. А. Khanadeev, B. N. Khlebtsov, S. A. Klimova, M. Y. Tsvetkov, V. N. Bagratashvili, G. B. Sukhorukov, N. G. Khlebtsov, “Large-scale high-quality 2D silica crystals:dip-drawing formation and decoration with gold nanorods and nanospheres for SERS analysis”, Nanotechnology 2014, 25, 405602
[41]N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods”, J. Mater. Chem. 2002, 12, 2909–2912
[42]K. Park, H. Koerner, R. A. Vaia, “Depletion-Induced Shape and Size Selection of Gold Nanoparticles”, Nano Lett. 2010, 10, 1433–1439
[43]T. Thai, Y. Zheng, S. H. Ng, S. Mudie, M. Altissimo, U. Bach, “Self-Assembly of Vertically Aligned Gold Nanorod Arrays on Patterned Substrates”, Angew. Chem. Int. Ed. 2012, 51, 8732–8735
[44]A. Martín, C. Schopf, A. Pescaglini, J. J. Wang, D. Iacopino, “Facile Formation of Ordered Vertical Arrays by Droplet Evaporation of Au Nanorod Organic Solutions”, Langmuir 2014, 30, 10206–10212
[45]C. Hanske, M. Tebbe, C. Kuttner, V. Bieber, V. V. Tsukruk, M. Chanana, T. A. F. König, A. Fery, “Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly”, Nano Lett. 2014, 14, 6863−6871
[46]J. Wang, M. Li, B. Tang, P. Xie, L. Ma, Z. Hu, Y. Zhao, Z. Wei, “Assembling single gold nanorods into large-scale highly aligned nanoarrays via vacuum-enhanced capillarity”, Nanoscale Research Letters 2014, 9, 556
[47]T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, H. Wolf, “Nanoparticle printing with single-particle resolution”, Nature nanotechnology 2007, 2, 570−576
[48]C. Kuemin, R. Stutz, N. D. Spencer, H. Wolf, “Precise Placement of Gold Nanorods by Capillary Assembly”, Langmuir 2011, 27, 6305–6310
[49]A. Rey, G. Billardon, E. Lörtscher, K. Moth-Poulsen, N. Stuhr-Hansen, H. Wolf, T. Bjornholm, A. Stemmer, H. Riel, “Deterministic assembly of linear gold nanorod chains as a platform for nanoscale applications”, Nanoscale 2013, 5, 8680−8688
[50]B. Yan, S. V. Boriskina, B. M. Reinhard, “Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing”, J. Phys. Chem. C 2011, 115, 24437–24453
[51]F. L. Yap, P. Thoniyot, S. Krishnan, S. Krishnamoorthy, ”Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers”, ACS Nano 2012, 6, 2056–2070
[52]W. Lee, S. Y. Lee, R. M. Briber, O. Rabin, “Self-Assembled SERS Substrates with Tunable Surface Plasmon Resonances ”, Advanced Functional Materials 2011, 21, 3424–3429
[53]D. Nepal, M. S. Onses, K. Park, M. Jespersen, C. J. Thode, P. F. Nealey, R. A. Vaia, “Control over Position, Orientation, and Spacing of Arrays of Gold Nanorods Using Chemically Nanopatterned Surfaces and Tailored Particle—Particle—Surface Interactions”, ACS Nano 2012, 6, 5693–5701
[54]L. Wang, Y. Zhu, L. Xu, W. Chen, H. Kuang, L. Liu, A. Agarwal, C. Xu, N. A. Kotov, “Side-by-Side and End-to-End Gold Nanorod Assemblies for Environmental Toxin Sensing”, Angew. Chem. Int. Ed. 2010, 49, 5472–5475
[55]J. York, D. Spetzler, F. Xiong, W. D. Frasch, “Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors”, Lab Chip 2008, 8, 415–419
[56]R. Zou, X. Guo, J. Yang, D. Li, F. Peng, L. Zhang, H. Wang, H. Yu, “Selective etching of gold nanorods by ferric chloride at room temperature”, Cryst. Eng. Comm. 2009, 11, 2797–2803
[57]J. A. Edgar, A. M. McDonagh, M. B. Cortie, “Formation of Gold Nanorods by a Stochastic Popcorn Mechanism”, ACS Nano 2012, 6, 1116–1125
[58]G. Lu, L. Hou, T. Zhang, W. Li, J. Liu, P. Perriat, Q. Gong, “Anisotropic Plasmonic Sensing of Individual or Coupled Gold Nanorods”, J. Phys. Chem. C 2011, 115, 22877–22885
[59]X. M. Qian, S. M. Nie, “Single-molecule and single nanoparticle SERS: from fundamental mechanisms to biomedical applications”, Chem. Soc. Rev. 2008, 37, 912–920
[60]J. Kneipp, H. Kneipp, K. Kneipp, “SERS—a single-molecule and nanoscale tool for bioanalytics”, Chem. Soc. Rev. 2008, 37, 1052–1060
[61]K. Kneipp , H. Kneipp, J. Kneipp, “Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold Nanoaggregatess From Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells”, Acc. Chem. Res. 2006, 39 , 443–450
[62]S. Lee, L. J. E. Anderson, C. M. Payne, J. H. Hafner, “Structural Transition in the Surfactant Layer that Surrounds Gold Nanorods as Observed by Analytical Surface Enhanced Raman Spectroscopy”, Langmuir 2011, 27, 14748–14756
[63]J. Kumar, K. G. Thomas, “Surface-Enhanced Raman Spectroscopy : Investigations at the Nanorod Edges and Dimer Junctions”, J. Phys. Chem. Lett. 2011, 2, 610–615
[64]Y. Zhu, H. Kuang, L. Xu, W. Ma, C. Peng, Y. Hua, L. Wang, C. Xu, “Gold nanorod assembly based approach to toxin detection by SERS”, J. Mater. Chem 2012, 22, 2387–2391
[65]G. Kawamura, Y. Yang, M. Nogami, “Facile assembling of gold nanorods with large aspect ratio and their surface-enhanced Raman scattering properties”, Appl. Phys. Lett. 2007, 90, 261908
[66]A. Lee, A. Ahmed, D. P. dos Santos, N. Coombs, J. Park, R. Gordon, A. G. Brolo, E. Kumacheva, “Side-by-Side Assembly of Gold Nanorods Reduces Ensemble-Averaged SERS Intensity”, J. Phys. Chem. C 2012, 116, 5538–5545
[67]M. D. Doherty, A. Murphy, J. McPhillips, R. J. Pollard, P. Dawson, “Wavelength Dependence of Raman Enhancement from Gold Nanorod Arrays: Quantitative Experiment and Modeling of a Hot Spot Dominated System”, J. Phys. Chem. C 2010, 114, 19913–19919
[68]G. P. Goodrich, L. Bao, K. Gill-Sharp, K. L. Sang, J. Wang, J. D. Payne, “Photothermal therapy in a murine colon cancer model using near-infrared absorbing gold nanorods ”, Journal of Biomedical Optics 2010, 15, 018001
[69]N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods”, J. Phys. Chem. B 2001, 105, 4065–4067
[70]B. N. Khlebtsov, V. A. Khanadeev, J. Ye, G. B. Sukhorukov, N. G. Khlebtsov, “ Overgrowth of Gold Nanorods by Using a Binary Surfactant Mixture”, Langmuir 2014, 30, 1696−1703
[71]R. L. Truby, S. Y. Emelianov, K. A. Homan. “Ligand-Mediated Self-Assembly of Hybrid Plasmonic and Superparamagnetic Nanostructures”, Langmuir 2013, 29, 2465−2470
[72]林智仁, ”場發射式掃瞄式電子顯微鏡簡介”, 工業材料雜誌, 181期, p.94–99
[73]博精儀器股份有限公司,“Lambda Bio 紫外光/可見光分光光譜儀”
[74]Z.L. Wang , M.B. Mohamed , S. Link , M.A. El-Sayed, “Crystallographic facets and shapes of gold nanorods of different aspect ratios”, Surface Science 1999, 440, L809–L814
[75]J. Gao, C. M. Bender, C. J. Murphy, “Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution”, Langmuir 2003, 19, 9065–9070
[76]Y. Niidome, Y. Nakamura, K. Honda, Y. Akiyama, K. Nishioka, H. Kawasaki, N. Nakashima, “Characterization of silver ions adsorbed on gold nanorods:surface analysis by using surface-assisted laser desorption / ionization time-of-flight mass spectrometry”, Chem. Commun. 2009, 1754–1756
[77]H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, E. K. Hyde, “Sodium Borohydride, Its Hydrolysis and Its Use as a Reducing Agent and in the Generation of Hydrogen”, J. Am. Chem. Soc. 1953, 75, 215–219
[78]B. Nikoobakht, Z. L. Wang, M. A. El-Sayed, “Self-Assembly of Gold Nanorods”, J. Phys. Chem. B 2000, 104, 8635–8640
[79]A. Brioude, X. C. Jiang, M. P. Pileni, “Optical Properties of Gold Nanorods:  DDA Simulations Supported by Experiments”, J. Phys. Chem. B 2005, 109, 13138–13142
[80]N. R. Jana, L. Gearheart, C. J. Murphy, “Seed-Mediated Growth Approach for Shape Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template”, Adv. Mater. 2001, 13, 1389–1393
[81]Y. Zhan, B. Cai, B. Wang, X. Huang, P. Zhang, L. Li, Z. Wu, Z. Yin, Q. Chen, “Silica cages with controllable frameworks: synthesis, structure-tailoring, and formation mechanism”, J. Mater. Chem. 2008, 18, 5967–5973
[82]R. G Rayavarapu, W. Petersen, L. Hartsuiker, P. Chin, H. Janssen, F. W. B. van Leeuwen, C. Otto, S. Manohar, T. G. van Leeuwen, ” In vitro toxicity studies of polymer-coated gold nanorods”, Nanotechnology 2010, 21, 145101
[83]Z. Chen, C. He, F. Li, L. Tong, X. Liao, Y. Wang, ” Responsive Micellar Films of Amphiphilic Block Copolymer Micelles: Control on Micelle Opening and Closing”, Langmuir 2010, 26, 8869–8874
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2015-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明