博碩士論文 91236002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.188.40.207
姓名 游政峰(Jeng-Feng You)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光子晶體異常折射之研究
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體傳導帶與介電質柱波導之研究★ 平面波展開法在光子晶體之應用
★ 偏平面光子晶體能帶之研究★ 通道選擇濾波器之探討
★ 廣義光子晶體元件之研究與分析★ 新式光子晶體波導濾波器之研究
★ 廣義非均向性介質的光傳播研究★ 光子晶體耦合濾波器之研究
★ 聲子晶體傳導帶與週期性彈性柱波導之研究★ 對稱與非對稱波導光柵之特性研究
★ 雙曲透鏡之研究★ 電磁波與聲波隱形斗篷之研究
★ 一維光子晶體等效非均向介值之研究★ 手徵超材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 負折射研究在2003年被科學(Science)雜誌選為十大科技成果之一,而光子晶體是能達成負折射現象的其中一個方法。本論文從光子晶體的基本理論談起,並應用用時域有限差分法(FDTD)於光子晶體發生負折射的頻段,驗證光子晶體的負折射理論。文中比較了理論預測與FDTD模擬結果在幾個情況下的差異性。我們首先改變光子晶體表面,並觀察其對負折射的影響。之後我們探討在負折射的情況下,能流在光子晶體內流動的空間分布特性,以及其與介電質柱之關係。而我們也利用此特性重新解釋了在三角晶格光子晶體中,當電磁波沿 方向入射時,其負折射的異常現象。
關鍵字(中) ★ 負折射
★ 異常折射
★ 光子晶體
關鍵字(英)
論文目次 摘要...................................................................Ⅰ
目錄.................................................................Ⅱ
圖索引...............................................................Ⅳ
第一章 緒論…………………………………………………………………………..1
1﹒1光子晶體的發展…………………………………………………………..1
1﹒2光子晶體的理論工具……………………………………………………..2
1﹒2﹒1平面波展開法……………………………………………………2
1﹒2﹒2時域有限差分法…………………………………………………3
1﹒3負折射的原理………………………………………………………………4
第二章 光子晶體理論架構…………………………………………………………..7
2﹒1光子晶體的概念……………………………………………………………7
2﹒2一維光子晶體的傳輸矩陣法………………………………………………7
2﹒3波動方程式………………………………………………………………...11
2﹒4光子晶體的平面波展開法……………………………………………….13
第三章 FDTD理論架構…………………………………………………………….15
3﹒1馬克斯威爾方程式……………………………………………………….15
3﹒2基本理論………………………………………………………………….15
3﹒3穩定條件………………………………………………………………….17
3﹒4邊界理論………………………………………………………………….18
3﹒4﹒1 Mur邊界理論………………………………………………….19
3﹒4﹒2 Berenger的PML邊界理論…………………………………..20
3﹒5時域有限差分法的二維平面程式……………………………………….25
3﹒5﹒1 Ez、Hx、Hy的計算……………………………………………25
3﹒5﹒2 邊界處理……………………………………………………….28
第四章 光子晶體的負折射研究……………………………………………………32
4﹒1光子晶體的負折射理論………………………………………………….32
4﹒1﹒1光子晶體的負折射理論驗證(正方晶格)…………………..35
4﹒1﹒2光子晶體的負折射理論驗證(三角晶格)…………………..41
4﹒2光子晶體的負折射表面特性探討……………………………………….46
4﹒3光子晶體負折射能流探討……………………………………………….50
4﹒4光子晶體負折射柱子間的電容效應…………………………………….57
第五章 結論…………………………………………………………………………63
參考資料……………………………………………………………………………..66
參考文獻 [ 1 ] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[ 2 ] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[ 3 ] C. M. Soukoulis(ed.),Photonic Crystals and Light Localization in the 21 st Centry( NATO Advanced Study Institute on Photonic Crystals and Light localization)
[ 4 ] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap”, Phys. Rev. B 62, 10696 (2000).
[ 5 ] Chiyan Luo et. al.,Phys. Rev. B 65, 201104 (2002); Appl. Phys. Lett. 81, 2352 (2002)
[ 6 ] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals”, Phys. Rev. B. 65, 115208 (2003) .
[ 7 ] A. Yariv, P. Yeh, Optical Waves in Crystals, John Wiley & Sons, New York, 1984.
[ 8 ] Pi-Gang Luan and Zhen Ye, “Acoustic wave propagation in a one-dimensional layered system”, Phys. Rev. E 63, 066611 (2001).
[ 9 ] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press, 1995.
[ 10 ] K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.
[ 11 ] Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, “Propagation inhibition and localization of electromagnetic waves in two- dimensional random dielectric systems”, Phys. Rev. E 69, 066615 (2004).
[ 12 ] Allen Taflove, Ausan C. Hagness, “Computational Electrodynamics : The Finite-Difference Time-Domain Method”
[ 13 ] 林振華編譯, “電磁場與天線分析-使用時域有限差分法”, 全華科技
[ 14 ] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of and ”, Sov. Phys. USPEKHI 10, 509 (1968).
[ 15 ] R. A. Shelby, D. R. Smith and S. Schultz, Science 292, 77 (2001).
[ 16 ] Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index”, Phys. Rev. B 65, 201104 (2002); Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal”, Appl. Phys. Lett. 81, 2352 (2002).
[ 17 ] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
[ 18 ] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966.
[ 19 ] G. Mur, “Absorbing boundary conditions for the finite-difference time-domain approximation of the time domain electromagnetic field equations,” IEEE Trans. Electromagn. Compat., vol. EMC-23, pp. 377-382, 1981.
[ 20 ] Holland, R. and J. Williams, “Total-field versus scattered-field finite-difference,” IEEE Trans. Nuclear Science, Vol. 30, 1983, pp. 4583-4587
[ 21 ] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-220, 1994.
[ 22 ] Berenger, J. P., “Perfectly matched layer for the FDTD solution of waves-structure interaction problems ,” IEEE Trans. Antennas and Propagation, Vol. 51, 1996, pp. 110-117
[ 23 ] Berenger, J. P., “A perfectly matched layer for free-space simulations in finite-difference computer codes,” Annales des Telecommunications, Vol. 51, 1996, pp. 39-46
[ 24 ] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett. 84, 4184 (2000).
[ 25 ] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966–3969 (2000).
[ 26 ] Ertugrul Cubukcu, Koray Aydin, Ekmel Ozbay, Stavroula Foteinopoulou, Costas M. Soukoulis, “Negative refraction by photonic crystals”, Nature 423, 604 (2003).
[ 27 ] E. Cubukcu, K. Aydin., E. Ozbay, “Subwavelength Resolution in a two-Dimensional Photonic-Crystal-Based Superlens” , Phys. Rev. Lett. 91, 207401 (2003).
[ 28 ] A. Martinez, H. Miguez, A. Griol, and J. Marti, “Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens”, Phys. Rev. B. 69, 165119 (2004).
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2005-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明