博碩士論文 102223023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.15.34.122
姓名 劉冠宏(Guan-hong Liu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鋰鈦氧四氧化三鈷複合材料於鋰離子電池負極之研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為因應未來幾年動力電源和儲能市場的快速成長,鋰離子二次電池在勢必需要往更大的能量密度、更快速充放電以及較長的循環壽命三個方向來發展。本研究將針對此一趨势設計開發能符合此一目地的新穎負極材料。
鋰鈦氧(Li4Ti5O12,簡稱LTO)具有鋰離子嵌入嵌出時體積不易變化的優點,展現較長的循環壽命,因此普遍應用在動力型電池的負極端;不過較低的理論電容量以及較差的快速充放電表現,讓LTO的發展備受考驗。本實驗使用LTO複合過渡金屬氧化物- Co3O4,希望藉由LTO的結構穩定性的優點以及Co3O4在充放電時還原出部分不可逆的高導電度Co金屬與高理論電容的優點,使鋰離子嵌入嵌出過程中第一層先經過外層體積零應變的LTO,Li4Ti5O12 + 3Li+ +3e- ↔ Li7Ti5O12,再經過能夠提供大量電容量的Co3O4,Co3O4 + 8Li+ + 8e- ↔ 3Co0 + 4Li2O,從FE-SEM、HRTEM結構的檢測配合電性測試證實以LTO包覆在外層能夠抑制Co3O4體積膨脹,有效延長電池循環壽命。
本研究中探討不同LTO及Co3O4比例的複合樣品:LC(75/25)、LC(50/50)與LC(25/75),並且以為主體為LTO的LC(75/25)-6以及主體為Co3O4的LC(25/75)-6樣品展現優良的電性表現。比較同樣在0.1C下放電電容量,純的鋰鈦氧電容量為140.4mAh/g,LC(75/25) 與LC(25/75)放電電容量表現為363.6mAh.g與682.2mAh/g,若將充放電速度提高到1C及2C,LC(75/25) 與LC(25/75)也有239.1 、 198.6 mAh/g與397.9 mAh/g 、 312 mAh/g的表現,經過以0.1C與1C充放電循環150圈後電性依然有很好的穩定性足證明此一結構設計可以製作符合未來趨勢的鋰電池負極材料。
摘要(英) To meet the emerging growth of power and energy storage market, new generation of lithium-ion batteries (LIBs) must meet the reqirements such as high energy density、high power、fast charge/discharge and long cycle life. The purpose of this research is to design high performance electrode active materials so as to meet those requirements.
Spinel lithium titanate LTO(Li4Ti5O12)-based anode has attracted great interest in high power lithium ion batteries due to its zero-strain character during lithiation and a very flat potential plateau at about 1.55V (vs. Li/Li+), which served as a safe electrode. Due to its low conductivity (~10-13 S cm-1) 、 low lithium ion diffusivity (~10-12 cm2 s-1) and poor specific capacity, LTO suffers from poor capacity and lower power density at high charge/discharge rates. Present research proposed to incorporate transition metal oxide (TMO) into the LTO in order to mitigate these drawbacks. Because TMO have been envisaged as alternate anode materials for LIBs which has high specific capacity and could reduce a part of high conductivity transition metal irreversibly and remain as the electrical conduction enhancer. Moreover, it contributes in promoting electron transfer in the redox reaction of LTO and thus improving the rate capability of LTO.
For the synthesis of the composite anode materials, Co3O4 was incorporated into LTO with three different composition, LTO:Co3O4=75:25、50:50 and 25:75 of weight percentage. Furthermore, it was found that by reducing calcination time from 12h to 6h, the capacity could be enhanced. Compared to 140.4 mAh/g in single LTO anode, the result shows that LC(75/25)-6 and LC(25/75)-6 could enhance the lithium charge capacity to about 363.5 and 682.2 mAh/g under 0.1C. The charge/discharge rate could be improved to 1C and 2C, with the capacity around 239.1 and 198.6 mAh/g for LC(75/25)-6 、 397.9 mAh/g and 312 mAh/g for LC(25/75)-6. It also performs good cycling stability, in which after 150 cycles under0.1C and 1C remain stable for LC(75/25)-6 and LC(25/75)-6. The Coulombice efficiency of capacity、rate capacity and long-term cycle is almost 100%.
關鍵字(中) ★ 鋰離子電池
★ 鋰鈦氧
★ 四氧化三鈷
★ 負極材料
關鍵字(英) ★ Lithium ion batteries
★ Li4Ti5O12
★ Co3O4
★ Anode materials
論文目次 摘要 I
Abstract III
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 鋰離子二次電池的原理及介紹 3
1-3 鋰離子二次電池的發展概況 4
1-4 研究動機與目的 6
第二章 原理介紹與文獻回顧 8
2-1 負極材料概述 8
2-2 負極材料儲理機制探討 11
2-3 過渡金屬氧化物負極材料 13
2-4 鋰鈦氧負極材料 22
2-4-1 鋰鈦氧負極材料制備方法 24
2-4-1-a 固相反應法 25
2-4-1-b 溶膠凝膠法 26
2-4-1-c 水熱法 26
2-4-2 鋰鈦氧負極材料改質修飾介紹 27
2-4-2-a 碳材或金屬的包覆 27
2-4-2-b金屬或非金屬離子的摻雜 29
2-4-2-c不同型態的材料 30
2-4-2-d複合材料 31
第三章 實驗方法 34
3-1 實驗藥品、器材與儀器設備 34
3-1-1 實驗藥品 34
3-1-2 實驗器材 35
3-1-3 實驗儀器 35
3-2 實驗步驟 37
3-2-1 負極活物材料合成 37
3-2-2 極片製作 38
3-2-3 鈕扣型電池組裝 39
3-3 材料鑑定與分析 40
3-2-1 X-Ray繞射分析儀 (PXRD) 40
3-2-2 場發射掃描式電子顯微 (FE-SEM) 40
3-2-3 高解析掃描穿透式電子顯微鏡 (HRTEM) 41
3-2-4 氮氣吸脫附儀 (BET) 41
3-2-5 X-ray電子能譜儀 (XPS) 42
3-4 材料電化學特性分析 43
3-4-1 交流阻抗分析儀 (AC Impedance) 43
3-4-2 鈕扣型電池電性測試 44
第四章 結果與討論 45
4-1 材料微結構鑑定分析 47
4-1-1 PXRD 晶體相態分析 47
4-1-2 X-ray電子能譜儀分析 49
4-1-3 SEM表面型態分析 50
4-1-4 HRTEM 表面型態分析 55
4-1-5 複合材比表面積分析 59
4-2 材料電化學特性分析 61
4-2-1 複合材料以不同鍛燒時間(12與6小時)之電性討論 61
4-2-2 材料定速率循環壽命測試 66
4-2-3 材料交流阻抗分析 70
4-2-4 材料變速率循環壽命測試 73
第五章 結論與未來展望 76
第六章 參考文獻 79
參考文獻 1. WHITTINGHAM, M. S.; Corporate Research Laboratories, E. R. a. E. C., Linden, New Jersey 07036, Electrical Energy Storage and Intercalation Chemistry. 1976.
2.蕭光哲, 快速充放電鋰離子電池負極材料. 工業材料雜誌 2008, 157.
3. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. NATURE 2001, 414, 359-367.
4. 呂承璋; 鄭敬哲; 陳金銘, 鋰離子電池高容量負極材料. 工業材料雜誌 2013, 314.
5. Dedryve`re, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.; Gonbeau, D., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn 1.6Ni0.4O4 /Li4Ti5O12 Lithium-Ion Battery. J. Phys. Chem. C 2010, 114, 10999–11008.
6. Stournara, M. E.; Shenoy, V. B., Enhanced Li capacity at high lithiation potentials in graphene oxide. Journal of Power Sources 2011, 196 (13), 5697-5703.
7. Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.; Ge, X. W., Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells. Journal of Power Sources 2008, 183 (1), 355-360.
8. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V., Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113 (7), 5364-457.
9. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M., Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries. NATURE 2000, 407, 496-499.
10.黃可龍, 鋰離子電池原理與技術. 2010, P.346.
11. Huang, X. H.; Tu, J. P.; Zhang, B.; Zhang, C. Q.; Li, Y.; Yuan, Y. F.; Wu, H. M., Electrochemical properties of NiO–Ni nanocomposite as anode material for lithium ion batteries. Journal of Power Sources 2006, 161 (1), 541-544.
12. Varghese, B.; M. V. Reddy; Yanwu, Z.; Lit, C. S.; Hoong, T. C.; Rao, G. V. S.; B. V. R. Chowdari; Wee, A. T. S.; Lim, C. T.; Sow, a. C.-H., Fabrication of NiO Nanowall Electrodes for High Performance Lithium Ion Battery. Chem. Mater 2008, 20, 3360–3367.
13. Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Xiang, J. Y., Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochemistry Communications 2007, 9 (5), 1180-1184.
14. Binotto, G.; Larcher; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J.-M., Synthesis, Characterization, and Li-Electrochemical Performance of Highly Porous Co3O4 Powders. 2007, 19, 3032 - 3040.
15. Liu, Y.; Mi, C.; Su, L.; Zhang, X., Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta 2008, 53 (5), 2507-2513.
16. Reddy, M. V.; Beichen, Z.; Nicholette, L. J. e.; Kaimeng, Z.; Chowdari, B. V. R., Molten Salt Synthesis and Its Electrochemical Characterization of Co3O4 for Lithium Batteries. Electrochemical and Solid-State Letters 2011, 14 (5), A79.
17. Needham, S. A.; Wang, G. X.; Konstantinov, K.; Tournayre, Y.; Lao, Z.; Liu, H. K., Electrochemical Performance of Co3O4–C Composite Anode Materials. Electrochemical and Solid-State Letters 2006, 9 (7), A315.
18. Wahab, M. A.; Darain, F., Nano-hard template synthesis of pure mesoporous NiO and its application for streptavidin protein immobilization. Nanotechnology 2014, 25 (16), 165701.
19. Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A., Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials 2008, 20 (2), 258-262.
20. Zhang, B.; Zhang, Y.; Miao, Z.; Wu, T.; Zhang, Z.; Yang, X., Micro/nano-structure Co3O4 as high capacity anode materials for lithium-ion batteries and the effect of the void volume on electrochemical performance. Journal of Power Sources 2014, 248, 289-295.
21. Zhan, L.; Wang, S.; Ding, L.-X.; Li, Z.; Wang, H., Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochimica Acta 2014, 135, 35-41.
22. Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H., Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. Journal of Power Sources 2003, 117 (1-2), 131-136.
23. Ohzuku, T.; Ueda, A.; Yamamota, N., Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells J. Electrochem. Soc 1995 142, 1431-1435.
24. (a) He, Y.-B.; Ning, F.; Li, B.; Song, Q.-S.; Lv, W.; Du, H.; Zhai, D.; Su, F.; Yang, Q.-H.; Kang, F., Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. Journal of Power Sources 2012, 202, 253-261; (b) Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J., Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. Journal of the American Chemical Society 2012, 134 (18), 7874-9.
25. Markovsky, B.; Amalraj, F.; Gottlieb, H. E.; Gofer, Y.; Martha, S. K.; Aurbach, D., On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts. Journal of The Electrochemical Society 2010, 157 (4), A423.
26. Ge, H.; Li, N.; Li, D.; Dai, C.; Wang, D., Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation. J. Phys. Chem. C 2009, 113, 6324–6326.
27. Lin, Y.-S.; Duh, J.-G., Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries. Journal of Power Sources 2011, 196 (24), 10698-10703.
28. Hsieh, C.-T.; Lin, J.-Y., Influence of Li addition on charge/discharge behavior of spinel lithium titanate. Journal of Alloys and Compounds 2010, 506 (1), 231-236.
29. COLBOW, K. M.; DAHN, J. R.; HAERING, R. R., STRUCTURE AND ELECTROCHEMISTRY OF THE SPINEL OXIDES LiTi204 AND Li4/3Ti5/3O4 Journal of Power Sources 1989, 26 397 - 402
30. Takami, N.; Hoshina, K.; Inagaki, H., Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction. Journal of The Electrochemical Society 2011, 158 (6), A725.
31. Yi, T.-F.; Yang, S.-Y.; Xie, Y., Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 2015, 3 (11), 5750-5777.
32.黃可龍, 鋰離子電池技術與原理. 2010, P.369.
33. Zaghib, K.; Simoneau, M.; Armand, M.; Gauthier, M., Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. Journal of Power Sources 1999, 300–305.
34. Chen, C. H.; Vaughey, J. T.; Jansen, A. N.; Dees, D. W.; Kahaian, A. J.; Goacher, T.; Thackeray, M. M., Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0< x < 1) for Lithium Batteries. Journal of The Electrochemical Society 2001, 148, A102-A104.
35. Li, X.; Qu, M.; Huai, Y.; Yu, Z., Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochimica Acta 2010, 55 (8), 2978-2982.
36. Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids 2010, 71 (9), 1236-1242.
37. Li, X.; Hu, H.; Huang, S.; Yu, G.; Gao, L.; Liu, H.; Yu, Y., Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology. Electrochimica Acta 2013, 112, 356-363.
38. Jung, H.-G.; Myung, S.-T.; Yoon, C. S.; Son, S.-B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y.-K., Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy & Environmental Science 2011, 4 (4), 1345.
39. Cheng, L.; Yan, J.; Zhu, G.-N.; Luo, J.-Y.; Wang, C.-X.; Xia, Y.-Y., General synthesis of carbon-coated nanostructure Li4Ti5O12as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010, 20 (3), 595-602.
40. Li, B.; Han, C.; He, Y.-B.; Yang, C.; Du, H.; Yang, Q.-H.; Kang, F., Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy & Environmental Science 2012, 5 (11), 9595.
41. Li, H.; Shen, L.; Yin, K.; Ji, J.; Wang, J.; Wang, X.; Zhang, X., Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. Journal of Materials Chemistry A 2013, 1 (24), 7270.
42. Li, N.; Liang, J.; Wei, D.; Zhu, Y.; Qian, Y., Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries. Electrochimica Acta 2014, 123, 346-352.
43. Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K. P.; Jasinski, J. B.; Kaminska, M.; Lipinska, L.; Czerwinski, A., Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. Journal of Power Sources 2014, 245, 764-771.
44. Liu, Z.; Zhang, N.; Wang, Z.; Sun, K., Highly dispersed Ag nanoparticles (<10nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. Journal of Power Sources 2012, 205, 479-482.
45. Chen, M.; Li, W.; Shen, X.; Diao, G., Fabrication of core-shell alpha-Fe2O3@ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS applied materials & interfaces 2014, 6 (6), 4514-23.
46. Wang, X.; Shen, L.; Li, H.; Wang, J.; Dou, H.; Zhang, X., PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochimica Acta 2014, 129, 283-289.
47. Luo, H.; Shen, L.; Rui, K.; Li, H.; Zhang, X., Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries. Journal of Alloys and Compounds 2013, 572, 37-42.
48. Yi, T.-F.; Xie, Y.; Wu, Q.; Liu, H.; Jiang, L.; Ye, M.; Zhu, R., High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. Journal of Power Sources 2012, 214, 220-226.
49. Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C. W.; Chou, T. C.; Hwang, B. J., Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy. Journal of Power Sources 2005, 146 (1-2), 204-208.
50. Jiang, C.; Ichihara, M.; Honma, I.; Zhou, H., Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochimica Acta 2007, 52 (23), 6470-6475.
51. Kim, S.; Fang, S.; Zhang, Z.; Chen, J.; Yang, L.; Penner-Hahn, J. E.; Deb, A., The electrochemical and local structural analysis of the mesoporous Li4Ti5O12 anode. Journal of Power Sources 2014, 268, 294-300.
52. Shen, L.; Yuan, C.; Luo, H.; Zhang, X.; Xu, K.; Xia, Y., Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. Journal of Materials Chemistry 2010, 20 (33), 6998.
53. Yu, S.-H.; Pucci, A.; Herntrich, T.; Willinger, M.-G.; Baek, S.-H.; Sung, Y.-E.; Pinna, N., Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J. Mater. Chem. 2011, 21 (3), 806-810.
54. Lin, Y.-S.; Tsai, M.-C.; Duh, J.-G., Self-assembled synthesis of nanoflower-like Li4Ti5O12 for ultrahigh rate lithium-ion batteries. Journal of Power Sources 2012, 214, 314-318.
55. Zhao, Y.; Sun, J.; Chen, X.; Zhu, H.; Yang, W., Synthesis and high-rate performance of spinel Li4Ti5O12 with core–shell hierarchical macro–mesoporous structure. New Journal of Chemistry 2014, 38 (3), 1173.
56. Xiao, L.; Chen, G.; Sun, J.; Chen, D.; Xu, H.; Zheng, Y., Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. Journal of Materials Chemistry A 2013, 1 (46), 14618.
57. Guo, X.; Xiang, H. F.; Zhou, T. P.; Li, W. H.; Wang, X. W.; Zhou, J. X.; Yu, Y., Solid-state synthesis and electrochemical performance of Li4Ti5O12/graphene composite for lithium-ion batteries. Electrochimica Acta 2013, 109, 33-38.
58. Ri, S. G.; Zhan, L.; Wang, Y.; Zhou, L.; Hu, J.; Liu, H., Li4Ti5O12/graphene nanostructure for lithium storage with high-rate performance. Electrochimica Acta 2013, 109, 389-394.
59. Ding, Y.; Li, G. R.; Xiao, C. W.; Gao, X. P., Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries. Electrochimica Acta 2013, 102, 282-289.
60. Jiang, Y. M.; Wang, K. X.; Wu, X. Y.; Zhang, H. J.; Bartlett, B. M.; Chen, J. S., Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. ACS applied materials & interfaces 2014, 6 (22), 19791-6.
61. Li, X.-P.; Mao, J., Sol-hydrothermal synthesis of Li4Ti5O12/rutile-TiO2 composite as high rate anode material for lithium ion batteries. Ceramics International 2014, 40 (8), 13553-13558.
62. Xu, C.; Xue, L.; Zhang, W.; Fan, X.; Yan, Y.; Li, Q.; Huang, Y.; Zhang, W., Hydrothermal Synthesis of Li4Ti5O12/TiO2 Nano-composite As High Performance Anode Material for Li-Ion Batteries. Electrochimica Acta 2014, 147, 506-512.
63. Hu, M.; Jiang, Y.; Yan, M., High rate Li4Ti5O12–Fe2O3 and Li4Ti5O12–CuO composite anodes for advanced lithium ion batteries. Journal of Alloys and Compounds 2014, 603, 202-206.
64. 能源科技(E-ONE MOLI ENERGY CORP.)公司網頁-鋰電池與其他電池基本特性比較(http://www.molicel.com/tw/knowledge/knowledge1.html)
指導教授 諸柏仁(Po-jen Chu) 審核日期 2015-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明