參考文獻 |
[1] S. Ciraci and I.P. Batra, “Theory of the Quantum Size Effect in Simple Metals,” Phys.
Rev. B 33 (1986) 4294-4297.
[2] K. Buchholz, A. Tinazli, A. Kleefen, D. Dorfner, D Pedone, U. Rant, R. Tampe, G.
Abstreiter, and M. Tornow, “Silicon on Insulator Based Nanopore Cavity Arrays for
Lipid Membrane Investigation,” Nanotechnology 19 (2008) 1-6.
[3] Y. J. Zhang, W. Lee, and K. J. Chen, “Application of Two Dimensional Polystyrene
Arrays in the Fabrication of Ordered Silicon Pillars,” J. Alloys Compd. 450 (2008)
512-516.
[4] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective Area Epitaxy Growth of
Si Using an Ultrathin SiO2/Si3Ni4 Mask Patterned by an Atomic Force Microscope,”
Appl. Phys. Lett. 77 (2000) 3917-3919.
[5] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered Magnetic
Nanostructures: Fabrication and Properties,” J. Magn. Mater. 256 (2003) 449-501.
[6] S. Bollant, P. Di. Lazzaro, F. Flora, L. Mezi, D. Murra, and A. Torre, “First Results
of High-resolution Patterning by the ENEA Laboratory-Scale Extreme Ultraviolet
Projection Lithography System,” EPL. 84 (2008) 58003.
[7] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely
Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum.
Methods 39 (1989) 515-520.
[8] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big
Idea,” Chapter 4, (2003), Prentice Hall.
[9] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling Nanoholes in Colloidal
39
Spheres by Selective Etching,” J. Mater. Chem. 16 (2006) 2132-2134.
[10] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-
Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,”
Adv. Mater. 17 (2005) 1507-1511.
[11] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite
Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas
Pressure Effect during Pulsed Laser Deposition,” Small 1 (2005) 837-841.
[12] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van
Duyne, “Nanosphere Lithography: Size-tunable Silver Nanoparticle and Surface
Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[13] N. Li and M. Z. Allmang. “Size-Tunable Ge Nanoparticle Arrays Patterned on Si
Suvstrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41
(2002) 4626-4629.
[14] S. Soleimani-Amiri, A. Gholizadeh, S. Rajabali, Z. Sanaee, and S. Mohaherzadeh,
“Formation of Si Nanorods and Hollow Nanostructures using High Precision Plasmatreated
Nanosphere Lithography,” RSC Adv. 4 (2014) 12701-12709.
[15] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F.
Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect
for VLSI Device Technology,” IEEE Trans. Electron. Device. 29 (1982) 547-553.
[16] H. J. Yan, Y. K. Liang, A. Kumar, and S. C. Seng, “Impact of Surface Preparation on
Ni (Pt) Silicide Oxidation,” Electrochem. Solid 14 (2011) 42-45.
[17] Z. Sa, L. X. Hua, L. Y. Jing, and W. D. Wei, “Rational Synthesis and Structural
Characterizations of Complex TiSi2 Nanostructures,” Chem. Mater. 21 (2009)
1023–1027.
[18] L. Y. Jing, Z. Sa, L. X. Hua, S. S. Han, and W. D. Wei, “TiO2/TiSi2 Heterostructures
40
for High-Efficiency Photoelectrochemical H2O Splitting,” J. Am. Chem. Soc. 131
(2009) 2772–2773.
[19] S. Banerjee, S. K. Mohapatra, and M. Misra, “Water Photooxidation by TiSi2/TiO2
Nanotubes,” J. Phys. Chem. 115 (2011) 12643–12649.
[20] Z. Sa, L. X. Hua, and W. D. We, “,Si/TiSi2 Heteronanostructures as High Capacity
Anode Material for Li Ion Batteries,” Nano. Lett. 10 (2010) 860–863.
[21] X. Jin, Y. X. Gang, H. B. Hon, Y. S. Horn, and W. D. Wei, “Site-Selective Deposition
of Twinned Platinum Nanoparticles on TiSi2 Nanonets by Atomic Layer Deposition
and Their Oxygen Reduction Activities,” ACS Nano. (2013) 6337-6345.
[22] K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L. V. d. hove, and R. F. D.
Keersmaecker, “Stability of As and B Doped Si with Respect to Overlaying CoSi2
and TiSi2 Thin Films,” J. Mater. Res. 4 (1989) 1209-1217.
[23] G. J. Burek, M. A. Wistey, U. Singisetti, A. Nelson, B. J. Thibeault, S. R. Bank, M. J.
W. Rodwell, and A. C. Gossard, “Height-selective Etching for Regrowth of Selfaligned
Contacts using MBE,” J. Cryst. Growth 311 (2009) 1984-1987.
[24] M. H. Juang, Y. S. Peng, and B. J. Liu, “Formation of Microcrystalline-Si Thin Film
Transistors by using Self-aligned Nickel-silicided Process,” Thin Solid Films 519
(2011) 3902-3905.
[25] A. Fleurence, G. Agnus, T. Maroutian, B. Bartenlian, and P. Beauvillain,”Au-assisted
Co Silicide Island Growth on Si(1 1 1),” Appl. Surf. Sci. 258 (2012) 9675- 9679.
[26] L. Yan, S. Zhitang, L. Bo, C. Houpeng, W. Guanping, Z. Chao, W. Lianhong, W. Lei,
and F. Songlin, ”Schottky-barrier Diode Array Fabrication with Self-aligned Ni
Silicidation for Low Power Phase-change Memory Application,” Proc. of Spie. 8782
(2012) 878213-1.
[27] G. M. Lan, X. X. Hong, G. Yun, J. G. Wen, D. Q. Rong, and S. G. Sheng, ”Self41
aligned TiO2 Thin Films with Remarkable Hydrogen Sensing Functionality,”
Sensor Actuat. B-Chem. 171-172 (2012) 165-171.
[28] M. M. A. Hakim, L. Tan, A. Abuelgasim, K. Mallik, S. Connor, A. Bousquet, C. H.
de Groot, W. R. White, S. Hall, and P. Ashburn, ”Self-Aligned Silicidation of
Surround Gate Vertical MOSFETs for Low Cost RF Applications,” IEEE T. Electron
Dev. 57 (2010) 3318-3326.
[29] K. H. Cherenack, B. Hekmatshoar, J. C. Sturm, and S. Wagner,” Self-Aligned
Amorphous Silicon Thin-Film Transistors Fabricated on Clear Plastic at 300◦ C,”
IEEE T. Electron Dev. 57 (2010) 2381-2388.
[30] E. Barbarini, S. Guastella, F. Pirri, and P. D. Torino, “Structural and Chemical
Analysis of Self-aligned Titanium Silicide Formed by Furnace Annealing,” IEEE
ASDAM 2010, 8th International Conference on Advanced Semiconductor Devices &
Microsystems (2010) 333-336.
[31] T. L. Ting, M. V. Mateus, and E. C. Kan, “Transverse-Field Bandgap Modulation on
Graphene Nanoribbon Transistors by Double-Self-Aligned Spacers,” D. R. C . (2012)
113-114.
[32] C. Zhang, F. Yan, B. C. Bayer, R. Blume, and M. H. V. D. Veen, “Complementary
Metal-Oxide-Semiconductor-Compatible and Self-aligned Catalyst Formation for
Carbon Nanotube Synthesis and Interconnect Fabrication,” J. Appl. Phys. 111 (2012)
064310.
[33] L. J. Wei, L. E. Ting, W. Terry, and C. T. Sheng, “Formation of Nickel-silicide
Selective Emitter by Laser-induced Annealing for P-type Solar Cell,” ECS Meeting
(2011).
[34] H. Iwai, T. Ohguro, and S. Ohmi, “NiSi Silicide Technology for Scaled CMOS,”
Microeletron. Eng. 60 (2002) 157-169.
42
[35] R. Beyers and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin
Films,” J. Appl. Phys. 57 (1985) 5240.
[36] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation
to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE T. Electron
Dev. 38 (1991) 264-269.
[37] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F.
Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect
for VLSI Device Technology,” IEEE T. Electron Dev. 29 (1982) 547-553.
[38] S. S. Lau, J. W. Mayer, and K. N. Tu, “Interactions in the Co/Si Thin film System. I.
Kinetics,” J. Appl. Phys. 49 (1978) 4005-4010.
[39] L. Zhang, Y. Du, H. Xu, and Z. Pan, “Experimental Investigation and
Thermodynamic Description of the Co-Si System.” Thermochemistry 30 (2006) 470-
481.
[40] G. J. Van Gurp and C. Langereis, “Cobalt Silicide Layers on Si. I. Structure and
Growth,” J. Appl. Phys. 46 (1975).
[41] A. H. Van Ommen, C. W. T. BulleLieuwma, and C. Langereis, “Properties of CoSi2
Formed on (001)Si,” J. Appl. Phys. 64 (1988).
[42] M. Tsuchiaki, C. Hongo, A. Takashima, and K. Ohuchi, “Intrinsic Junction Leakage
Generated by Cobalt In-Diffusion during CoSi2 Formation,” Jpn. J. Appl. Phys. 41
(2002) 2437-2444.
[43] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F.
Loosen, S. Jin, J. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, K. Maex,
“Comparative Study of Ni-Silicide and Co-Silicide for sub 0.25 μm Technologies,”
Microelectron. Eng.. 50 (2000) 103-116.
[44] F. D. Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic
43
Compounds with the CaF2 Structure : A Marker Study of the Formation of NiSi2 Thin
film,” J. Appl. Phys. 53 (1982) 5678-5681.
[45] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan,
“Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71
(2004) 104-111.
[46] E. G. Colgan, J. P. Gambino, and B. Cunningham, “Nickel Silicide Thermal Stability
on Polycrystalline and Single Crystalline Silicon,” Mater. Chem. Phy. 46 (1996) 209-
214.
[47] S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial Reactions of 2D Periodic Arrays of
Ni Metal Dots on (001) Si,” J. Phys. Chem. Solids. 69 (2008) 620-624.
[48] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1-0.6 mm
Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996)
999-1001.
[49] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, “Low Temperature Metal
Induced Crystallization of Amorphous Silicon using a Ni Solution,” J. Appl. Phys. 82
(1997).
[50] S. Y. Yoon, C. O. Kim, J. Y. Oh, and J. Jang, “Low Temperature Solid Phase
Crystallization of Amorphous Silicon at 300 oC,” J. Appl. Phys. 84 (1998).
[51] C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-mediated
Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys.
73 (1993) 8279-8289.
[52] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and Man Wong, “Nickel Induced
Crystallization of Amorphous Silicon Thin Films.” J. Appl. Phys. 84 (1998).
[53] J. W. Mayer and O. J. Marsh, “Ion Implantation in Semiconductors,” Appl. Solid State
Sci. (1969) 239-243.
44
[54] P. Ahmet, T. Shiozawa, K. Nagahiro, T. Nagata, K. Kakushima, K. Tsutsui, T.
Chikyow, and H. Iwai, “Thermal Stability of Ni Silicide Films on Heavily Doped n+
and p+ Si Substrates,” Microelectron. Eng. 85 (2008) 1642-4646.
[55] M. C. Poon, F. Deng, M. Chan, W. Y. Chan, and S. S. Lau, “Resistivity and Thermal
Stability of Nickel Mono-silicide,” Appl. Sur. Sci. 157 (2000) 29-34.
[56] M. C. Poon, M. Chan, W. Q. Zhang, F. Deng, and S. S. Lau, “Stability of NiSi in
Boron-doped Polysilicon Lines,” Micro. Rel. 38 (1998) 1499-1502.
[57] S. R. Das, D. X. Xu, M. Nournia, L. Lebrun, and A. Naem, “Thermal Stability of
Nickel Silicide Films,” Mat. Res. Soc. (1996).
[58] M. Tsuchiaki, K. Ohuchi, and A. Nishiyama, “Suppression of Thermally Induced
Leakage of NiSi-Silicided Shallow Junctions by Pre-Silicide Fluorine Implantation,”
Jap. J. Appl. Phy. 44 (2005) 1673-1681.
[59] J. Luo, Z. J. Qiu, J. Deng, C. Zhao, J. F. Li, W. W. Wang, D. P. Chen, D. P. Wu, M.
Ostling, T. C. Ye, and S. L. Zhang, “Effects of Carbon Pre-silicidation Implant into
Si Substrate on NiSi,” Microelectron. Eng. 120 (2014) 178-181.
[60] C. Ortolland, M. Togo, E. Rosseel, S. Mertens, J. Kittl, P. P. Absil, A. Lauwers, and
T. Hoffmann, “New Carbon-based Thermal Stability Improvement Technique for
NiPt/Si used in CMOS Technology,” Microelectron. Eng. 88 (2011) 578-582.
[61] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima,
“Improvement in NiSi/Si Contact Properties with C-implantation,” Microelectron.
Eng. 82 (2005) 479-484.
[62] B. Y. Tsui, C. M. Hsieh, Y. R. Hung, Y. Yang, R. Shen, S. Cheng, and T. Lin,
“Improvement of the Thermal Stability of NiSi by Germanium Ion Implantation,” J.
Electronchem. Soc. 157 (2010) 137-143.
[63] T. S. Chao, C. H. Chien, C. P. Hao, M. C. Liaw, C. H. Chu, C. Y. Chang, T. F. Lei, W.
45
T. Sun, and C. H. Hsu, “Suppression of Boron Penetration in P+ Poly-Si Gate Metal-
Oxide-Semiconductor Transistor Using Nitrogen Implantation,” Jpn. J. Appl. Phys.
36 (1997) 1364-1367.
[64] K. Kashihara, T. Yamaguchi, T. Tsutsumi, K. Maekawa, K. Asai, and M. Yoneda,
“Improvement of Thermal Stability of Nickel Silicide using N2 Ion Implantation Prior
to Nickel Film Deposition,” IEEE Electron Dev. (2006) 176-179.
[65] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved
NiSi Salicide Process Using Presilicide N2
+ Implant for MOSFETs,” IEEE Electron
Dev. 21 (2000) 566-568.
[66] L. W. Cheng, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of Nitrogen
Ion Implantation on the Formation of Nickel Silicide Contacts on Shallow Junctions,”
Thin Solid Films 355-356 (1999) 412-416.
[67] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41
(1982) 377-379.
[68] C. Geng, L. Zheng, J. Yu, Q. Yan, X. Wang, G. Shen, and D. Shen, “Monolayer
Colloidal Mask with Tunable Interstice Size for Nanosphere Lithography,” Thin Solid
Film 544 (2013) 83-87.
[69] N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly Conductive and Transparent
Ag Honeycomb Mesh Fabricated using a Monolayer of Polystyrene Spheres,”
Nanotechnology 24 (2013) 235205.
[70] W. Ehrfeld and H. Lehr, “Deep X-ray Lithography For the Production of Three-
Dimensional Microstructures from Metals, Polymers and Ceramics,” Radiat. Phys.
Chem. 45 (1995) 349-365.
[71] K. Wilder, Calvin F. Quate, D. Adderton, R. Bernstein, and V. Elings, “Noncontact
Nanolithography using the Atomic Force Microscope,” Appl. Phys. Lett. (1998).
46
[72] J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, “Nanoscale
Patterning and Oxidation of H-passivated Si (100)- 2 × 1 Surfaces with an Ultrahigh
Vacuum Scanning Tunneling Microscope,” Appl. Phys. Lett. 64 (1994) 2010-2012.
[73] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett,
“Modification of Hydrogen-passivated Silicon by a Scanning Tunneling Microscope
Operating in Air,” Appl. Phys. Lett. 56 (1990) 2001-2003.
[74] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong,
“Fabrication of Size- Tunable Gold Nanoparticles Array with Nanosphere
Lithography, Reactive Ion Etching, and Thermal Annealing,” J. Phys. Chem. 109
(2005) 11100-11109.
[75] S. Huang, Q. Yang, C. Zhang, L. Kong, S. Li, and J. Kang, “Structural Anomalies
Induced by the Metal Deposition Methods in 2D Silver Nanoparticle Arrays Prepared
by Nanosphere Lithography,” Thin Solid Films 536 (2013) 136-141.
[76] M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, “Fabrication of Nanodot and
Nanoring Arrays by Nanosphere Lithography,” Appl. Phys. 63 (1996) 617-619.
[77] J.Boneberg, F. Burmeister, C. Schafle, and P. Leiderer, “The Formation of Nano-Dot
and Nano-Ring Structures in Colloidal Monolayer Lithography,” Langmuir 13 (1997)
7080-7084.
[78] P. Chen, Y. Fan, and Z. Zhong, “The Fabrication and Application of Patterned Si (001)
Substrates with Ordered Pits Via Nanosphere Lithography,” Nanotechnology 20
(2009) 095303.
[79] G. Horneck and B. K. Christa, “Astrobiology : The Quest for the Conditions of Life:
Complexity and Life, Molecular Self-Assembly and the Origin of Life,” Part V 2001,
Springer.
[80] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295
47
(2002) 2418-2421.
[81] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals
(MIPO): Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000)
1940-1944.
[82] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens
Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006)
7358-7363.
[83] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I.
Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic
Crystals,” Adv. Mater. 17 (2005) 2455-2458.
[84] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,”
Encyclopedia of Nanosci. and Nanotech. (2003) 1-23.
[85] K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films,”
Colloids Surf. A 109 (1996) 363-374.
[86] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,”
Langmuir 10 (1994) 23-36.
[87] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus
Interactions Between Colloidal Particles Attached to a Liquid-Fluid Interface,” J.
Colloid Interface Sci. 151 (1992) 79-94.
[88] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama,
“Energetical and Force Approaches to the Capillary Interactions between Particles
Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.
[89] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K.
Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex
Particles on Substrates,” Langmuir 8 (1992) 3183-3190.
48
[90] F. Jarai-Szabo, S. Astilean, and Z. Neda, “Understanding Self-Assembled
Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241-246.
[91] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, and F. Lu, “2D Nanoparticle Arrays by Partial
Dissolution of Ordered Pore Films,” Mater. Lett. 59 (2005) 276-279.
[92] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array
Pattern Fabricated With Self-Assembled Nanosphere Template,” IEEE Sensors
Journal 8 (2008) 880-884.
[93] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication
with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002)
554-558.
[94] P. Jiang and M. J. McFarland, “Large-scale Fabrication of Wafer-Size Colloidal
Crystals, Macroporous Polymers and Nanocomposites by Spin-coating,” J. Am.
Chem. Soc. 126 (2004) 13778-13786.
[95] J. Chen, P. Dong, D. Di, C. Wang, H. Wang, J. Wang, and X. Wu, “Controllable
Fabrication of 2D Colloidal-crystal Films with Polystyrene Nanospheres of Various
Diameters by Spin-Coating,” Appl. Sur. Sci. 270 (2013) 6-15.
[96] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by
Stepwise Spin-Coating,” Adv. Mater. 16 (2004) 244-247.
[97] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic
Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.
[98] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, S.
J. Suh, “Fabrication of Low-cost Mold and Nanoimprint Lithography using
Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.
[99] E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, “Macroscopic Ordering of Polystyrene
Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface,”
49
Langmuir 13 (2010) 10677-10683.
[100] M. Retsch, K. H. Dostert, S. K. Nett, N. Vogel, J. S. Gutmann, and U. Jonas,
“Template-Free Structureing of Colloidal Hetero-Monolayers by Inkjet Printing and
Particle Floating,” Soft Mater. 6 (2010) 2403-2412.
[101] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation
of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,”
Langmuir 20 (2004) 10677-10683.
[102] S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen,
“Fabrication of Size-tunable, Periodic Si Nanohole Arrays by Plasma Modified
Nanosphere Lithography and Anisotropic Wet Etching,” Appl. Surf. Sci. 263 (2012)
430-435.
[103] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, and L. Hu, “Fabrication and
Photoelectrochemical Properties of Ordered Si Nanohole Arrays,” Appl. Surf. Sci.
292 (2014) 86-92.
[104] H. C. Wu, X. B. Xu, M. Y. He, M. Q. Zhang, K. J. Ma, and M. D. Bao, “Fabrication
of Size-tunable Antireflective Nanopillar Array using Hybrid Nano-patterning
Lithography,” Surf. Coat. Tech. 240 (2014) 413-418.
[105] J. C. Hulteen and R. P. Van Duyne, “Nanosphere Lithography: Amaterials General
Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Tech. A13 (1995)
1553-1558.
[106] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow
Nanosphere Lithography: Simulation and Experiment,” Nanoletters 4 (2004) 1359-
1363.
[107] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne,
“Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size,
50
Shape, and Interparticle Spacing,” J. Phys. Chem. 106 (2002) 1898-1902.
[108] M. T. Zin, K. Leong, N. Y. Wong, H. Ma, and A. Jen, “Plasmon Resonant Structures
with Unique Topographic Characteristics and Tunable Optical Properties for Surface-
Enhanced Raman scattering,” Nanotechnology 18 (2007) 455301-1~6.
[109] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Fcile Route to Synthesis of
Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl.
Phys. 45 (2006) 582-584.
[110] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale
Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4 (2004) 2223-2226.
[111] G. Zhang and D. Wang, “Fabrication of Heterogeneous Binary Arrays of
Nanoparticles via Colloidal Lithography,” J. Am. Chem. Soc. 130 (2008) 5616-5617.
[112] Z. A. Lewicka, W. W. Yu, and V. L. Colvin, “An Alternative Approach to Fabricate
Metal Nanoring Structures Based on Nanosphere Lithography,” P. Soc. Photo-Opt.
Ins. 810213 (2011) 1-7.
[113] L. Johnson and D. A. Walsh, “Deposition of Silver Nanobowl Arrays using
Polystyrene Nanospheres Both as Reagents and as the Templating Material,” J. Mater.
Chem. 21 (2011) 7555-7558.
[114] M. J . Klein, M. Guillaum´ee, B. Wenger, L. A. Dunbar, J. Brugger, H. Heinzelmann,
and R. Pugin,“Inexpensive and Fast Wafer-scale Fabrication of Nanohole Arrays in
Thin Gold Films for Plasmonics,”Nanotechnology 21 (2010) 205301-205308.
[115] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by
Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473-477.
[116] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size
Liftable Inverted-nanobowl Sheets as Reusable Masks for Nanolithography,” Nano
Lett. 5 (2005) 1784-1788.
51
[117] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication
of Periodic Nickel Silicide Nanodot Arrays using Nanosphere Lithography,” The
Solid Films 494 (2006) 307-310.
[118] Md. Ahamad Mohiddon and M. Ghanashyam |