博碩士論文 102324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.149.252.238
姓名 黃以德(Yi-De Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用自組裝奈米球微影術(Nanosphere Lithography, NSL)結合蒸鍍技術與熱

退火製程在非晶矽基材與氮氣離子佈植非晶矽基材上製備出大面積有序排列之鎳金屬

矽化物奈米點陣列,並探討所製備之鎳金屬點陣列與非晶矽基材在不同溫度下熱退火處

理之界面反應。

從穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 及選區電子繞射

(Select Area Electron Diffraction, SAED) 分析中,發現鎳金屬奈米點陣列在非晶矽基材上

反應時,在低溫退火300 oC 時就已完全轉換成低電阻NiSi 相。與先前本實驗室研究結

果說明由於基材有固定晶面並且最低能量考量的關係在單晶矽基材上350 oC 即生成高

電阻NiSi2 相。此結果說明沒有固定結晶晶面的非晶矽基材能夠使高電阻NiSi2 相生成延

遲。

另一部分,我們以同樣條件在具有氮氣離子佈植之非晶矽基材上製備鎳金屬奈米點

陣列結構,並以同樣退火條件下觀察奈米尺度之鎳金屬奈米點陣與氮氣離子佈植非晶矽

基材之界面反應。結果顯示具有氮氣離子佈植非晶矽基材其NiSi 溫度窗為300-500 oC,

較第一部分能夠延長低電阻NiSi 相熱穩定性約150 oC 之溫度差距,造成如此差異的結

果,推測為鎳金屬點陣與非晶矽基材反應時,氮氣會因其與矽的溶解度低的原因而被排

出至矽化物晶界以及矽化物與非晶矽基材界面處,降低其界面能,從而延長NiSi 相的溫

度窗。上述結果顯示,相信在未來光電以及先進奈米元件之研究上將具有很大的研究潛

力。
摘要(英) In the present study, we have demonstrated that 2D periodic arrays of nickel silicide

nanodots can be successfully fabricate on the amorphous silicon substrates and nitrogen

ion implanted amorphous silicon substrates by using the polystyrene nanosphere

lithography(NSL), evaporation technique and thermal annealing process. The interfacial

reactions of the nickel nanodots on amorphous silicon substrate after different heat

treatments have also been investigated.

From the TEM and SAED analysis, low resistivity NiSi nanodots were found to form

on amorphous silicon at annealing temperature as low as 300 oC. From our earlier

researches and other previous studies, the growth of high resistivity NiSi2 nanodots was

found to be more favorable for the miniature size Ni metal nanodots on crystal Si

substrates at annealing temperature as low as 350oC. The results indicated that the

amorphous silicon exhibited significant beneficial effects on the enhanced growth of low

resistivity NiSi and improved the stability of NiSi nanodots.

Other studies was Ni metal dots on nitrogen ion implanted amorphous silicon

substrate at various heat treatments. The incorporation of N2 to a-Si substrates exhibited

excellent effects on improving the thermal stability of NiSi nanodots. The process window

of low resistivity NiSi in the Ni nanodots/a-Si(N2

+) sample was greatly extended by 150 oC

as compared to that in the Ni nanodots/a-Si sample. The results indicated that the presence

of N2 is thought to lower the NiSi nanodots/a-Si(N2

+) interface energy and to block the Ni

diffusion paths. Both the Ni metal nanodots on the amorphous silicon substrate and

nitrogen ion implanted amorphous silicon substrate annealed at 900oC, highly curled and

tangled amorphous nanowires were observed to grow from silicide nanodots regions.
關鍵字(中) ★ 離子佈植
★ 金屬矽化物
關鍵字(英)
論文目次 摘要 ..................................................................................................................................... I

Abstract .............................................................................................................................. II

致謝 .................................................................................................................................. III

第一章 簡介 ................................................................................................................ 1

1-1 前言 ............................................................................................................................. 1

1-2 金屬矽化物製程 ......................................................................................................... 2

1-2-1 金屬矽化物的應用及製程 .............................................................................. 2

1-2-2 鈦金屬矽化物 ................................................................................................. 3

1-2-3 鈷金屬矽化物 ................................................................................................. 4

1-2-4 鎳金屬矽化物 ................................................................................................. 4

1-2-5 金屬誘發非晶質矽結晶(Metal-Induced Crystallization, MIC) ...................... 5

1-3 矽晶圓離子佈植 ......................................................................................................... 6

1-3-1 離子佈植之製程 ............................................................................................. 6

1-3-2 離子佈植之應用 ............................................................................................. 7

1-3-3 離子佈植對於鎳矽化物熱穩定性之影響 ..................................................... 8

1-4 微影製程技術 ............................................................................................................. 9

1-4-1 掃描式探針微影術 ......................................................................................... 9

1-4-2 X-ray 微影術 .................................................................................................. 10

1-4-3 電子束微影術 ............................................................................................... 10

1-5 奈米球微影術 ........................................................................................................... 10

1-5-1 自組裝簡介 ................................................................................................... 11

1-5-2 奈米球自組裝技術 ....................................................................................... 11

V

1-5-2-1 自然滴製法(Drop Coating) ........................................................................ 11

1-5-2-2 旋轉塗佈法(Spin Coating) ........................................................................ 12

1-5-2-3 液面自組裝轉附技術 ................................................................................ 12

1-6 奈米球微影術製備各式奈米結構 ........................................................................... 13

1-6-1 金屬薄膜沉積製程技術 ............................................................................... 13

1-7 研究動機 ................................................................................................................... 14

第二章 實驗步驟及儀器分析 .................................................................................. 16

2-1 奈米球模板之製備 .................................................................................................... 16

2-1-1 基材使用前處理 ........................................................................................... 16

2-1-2 奈米球膠體溶液配製 ................................................................................... 17

2-1-3 自組裝奈米球陣列 ....................................................................................... 18

2-2 大面積鎳金屬矽化物奈米點陣列之製備 ............................................................... 18

2-2-1 金屬薄膜蒸鍍 ............................................................................................... 18

2-2-2 奈米球舉離 ................................................................................................... 19

2-2-3 退火熱處理 ................................................................................................... 19

2-3 使用儀器及特性分析 ............................................................................................... 19

2-3-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) ......................... 19

2-3-2 原子力顯微鏡(Atomic Force Microscopy, AFM) ........................................ 20

2-3-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) ................... 20

第三章 結果與討論 .................................................................................................. 21

3-1 奈米球模板之製備 ................................................................................................... 21

3-1-1 液面自組裝轉附技術 ................................................................................... 21

3-2 非晶矽薄膜上製備鎳矽化物奈米點陣列 ............................................................... 22

3-2-1 鎳金屬奈米點陣及其矽化物在非晶矽基材上之形貌觀察 ........................ 22

3-2-2 鎳金屬奈米點陣在非晶矽基材之界面反應 ............................................... 24

VI

3-2-3 鎳矽化物相轉變與基材結構變化之觀察 ................................................... 27

3-3 氮氣離子佈植基材上製備鎳矽化物奈米點陣列 ................................................... 29

3-3-1 鎳金屬奈米點陣及其矽化物於氮氣離子佈植非晶矽基材之形貌觀察 ... 29

3-3-2 鎳金屬奈米點陣於氮氣離子佈植非晶矽基材之界面反應 ....................... 30

3-3-3 鎳矽化物相轉變與基材結構變化之觀察 ................................................... 33

第四章 結論 .............................................................................................................. 36

參考文獻 .......................................................................................................................... 38

表目錄 .............................................................................................................................. 52

圖目錄 .............................................................................................................................. 56
參考文獻 [1] S. Ciraci and I.P. Batra, “Theory of the Quantum Size Effect in Simple Metals,” Phys.

Rev. B 33 (1986) 4294-4297.

[2] K. Buchholz, A. Tinazli, A. Kleefen, D. Dorfner, D Pedone, U. Rant, R. Tampe, G.

Abstreiter, and M. Tornow, “Silicon on Insulator Based Nanopore Cavity Arrays for

Lipid Membrane Investigation,” Nanotechnology 19 (2008) 1-6.

[3] Y. J. Zhang, W. Lee, and K. J. Chen, “Application of Two Dimensional Polystyrene

Arrays in the Fabrication of Ordered Silicon Pillars,” J. Alloys Compd. 450 (2008)

512-516.

[4] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective Area Epitaxy Growth of

Si Using an Ultrathin SiO2/Si3Ni4 Mask Patterned by an Atomic Force Microscope,”

Appl. Phys. Lett. 77 (2000) 3917-3919.

[5] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered Magnetic

Nanostructures: Fabrication and Properties,” J. Magn. Mater. 256 (2003) 449-501.

[6] S. Bollant, P. Di. Lazzaro, F. Flora, L. Mezi, D. Murra, and A. Torre, “First Results

of High-resolution Patterning by the ENEA Laboratory-Scale Extreme Ultraviolet

Projection Lithography System,” EPL. 84 (2008) 58003.

[7] E. Miyauchi, H. Arimoto, and H. Kitada, “Ion Species and Energy Control of Finely

Focused RBs for Maskless in Situ Microfabrication Processes,” Nucl. Instrum.

Methods 39 (1989) 515-520.

[8] M. Ratner and D. Ratner, “Nanotechnology: A Gentle Introduction to the Next Big

Idea,” Chapter 4, (2003), Prentice Hall.

[9] Q. Yan, F. Liu, L. Wang, J. Y. Lee, and X. S. Zhao, “Drilling Nanoholes in Colloidal

39

Spheres by Selective Etching,” J. Mater. Chem. 16 (2006) 2132-2134.

[10] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, “Directed Self-

Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field,”

Adv. Mater. 17 (2005) 1507-1511.

[11] W. Ma, D. Hesse, and U. Gcsele, “Formation of Ferroelectric Perovskite

Nanostructure Patterns Using Latex Sphere Monolayers as Masks: An Ambient Gas

Pressure Effect during Pulsed Laser Deposition,” Small 1 (2005) 837-841.

[12] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van

Duyne, “Nanosphere Lithography: Size-tunable Silver Nanoparticle and Surface

Cluster Arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.

[13] N. Li and M. Z. Allmang. “Size-Tunable Ge Nanoparticle Arrays Patterned on Si

Suvstrates with Nanosphere Lithography and Thermal Annealing,” J. Appl. Phys. 41

(2002) 4626-4629.

[14] S. Soleimani-Amiri, A. Gholizadeh, S. Rajabali, Z. Sanaee, and S. Mohaherzadeh,

“Formation of Si Nanorods and Hollow Nanostructures using High Precision Plasmatreated

Nanosphere Lithography,” RSC Adv. 4 (2014) 12701-12709.

[15] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F.

Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect

for VLSI Device Technology,” IEEE Trans. Electron. Device. 29 (1982) 547-553.

[16] H. J. Yan, Y. K. Liang, A. Kumar, and S. C. Seng, “Impact of Surface Preparation on

Ni (Pt) Silicide Oxidation,” Electrochem. Solid 14 (2011) 42-45.

[17] Z. Sa, L. X. Hua, L. Y. Jing, and W. D. Wei, “Rational Synthesis and Structural

Characterizations of Complex TiSi2 Nanostructures,” Chem. Mater. 21 (2009)

1023–1027.

[18] L. Y. Jing, Z. Sa, L. X. Hua, S. S. Han, and W. D. Wei, “TiO2/TiSi2 Heterostructures

40

for High-Efficiency Photoelectrochemical H2O Splitting,” J. Am. Chem. Soc. 131

(2009) 2772–2773.

[19] S. Banerjee, S. K. Mohapatra, and M. Misra, “Water Photooxidation by TiSi2/TiO2

Nanotubes,” J. Phys. Chem. 115 (2011) 12643–12649.

[20] Z. Sa, L. X. Hua, and W. D. We, “,Si/TiSi2 Heteronanostructures as High Capacity

Anode Material for Li Ion Batteries,” Nano. Lett. 10 (2010) 860–863.

[21] X. Jin, Y. X. Gang, H. B. Hon, Y. S. Horn, and W. D. Wei, “Site-Selective Deposition

of Twinned Platinum Nanoparticles on TiSi2 Nanonets by Atomic Layer Deposition

and Their Oxygen Reduction Activities,” ACS Nano. (2013) 6337-6345.

[22] K. Maex, G. Ghosh, L. Delaey, V. Probst, P. Lippens, L. V. d. hove, and R. F. D.

Keersmaecker, “Stability of As and B Doped Si with Respect to Overlaying CoSi2

and TiSi2 Thin Films,” J. Mater. Res. 4 (1989) 1209-1217.

[23] G. J. Burek, M. A. Wistey, U. Singisetti, A. Nelson, B. J. Thibeault, S. R. Bank, M. J.

W. Rodwell, and A. C. Gossard, “Height-selective Etching for Regrowth of Selfaligned

Contacts using MBE,” J. Cryst. Growth 311 (2009) 1984-1987.

[24] M. H. Juang, Y. S. Peng, and B. J. Liu, “Formation of Microcrystalline-Si Thin Film

Transistors by using Self-aligned Nickel-silicided Process,” Thin Solid Films 519

(2011) 3902-3905.

[25] A. Fleurence, G. Agnus, T. Maroutian, B. Bartenlian, and P. Beauvillain,”Au-assisted

Co Silicide Island Growth on Si(1 1 1),” Appl. Surf. Sci. 258 (2012) 9675- 9679.

[26] L. Yan, S. Zhitang, L. Bo, C. Houpeng, W. Guanping, Z. Chao, W. Lianhong, W. Lei,

and F. Songlin, ”Schottky-barrier Diode Array Fabrication with Self-aligned Ni

Silicidation for Low Power Phase-change Memory Application,” Proc. of Spie. 8782

(2012) 878213-1.

[27] G. M. Lan, X. X. Hong, G. Yun, J. G. Wen, D. Q. Rong, and S. G. Sheng, ”Self41

aligned TiO2 Thin Films with Remarkable Hydrogen Sensing Functionality,”

Sensor Actuat. B-Chem. 171-172 (2012) 165-171.

[28] M. M. A. Hakim, L. Tan, A. Abuelgasim, K. Mallik, S. Connor, A. Bousquet, C. H.

de Groot, W. R. White, S. Hall, and P. Ashburn, ”Self-Aligned Silicidation of

Surround Gate Vertical MOSFETs for Low Cost RF Applications,” IEEE T. Electron

Dev. 57 (2010) 3318-3326.

[29] K. H. Cherenack, B. Hekmatshoar, J. C. Sturm, and S. Wagner,” Self-Aligned

Amorphous Silicon Thin-Film Transistors Fabricated on Clear Plastic at 300◦ C,”

IEEE T. Electron Dev. 57 (2010) 2381-2388.

[30] E. Barbarini, S. Guastella, F. Pirri, and P. D. Torino, “Structural and Chemical

Analysis of Self-aligned Titanium Silicide Formed by Furnace Annealing,” IEEE

ASDAM 2010, 8th International Conference on Advanced Semiconductor Devices &

Microsystems (2010) 333-336.

[31] T. L. Ting, M. V. Mateus, and E. C. Kan, “Transverse-Field Bandgap Modulation on

Graphene Nanoribbon Transistors by Double-Self-Aligned Spacers,” D. R. C . (2012)

113-114.

[32] C. Zhang, F. Yan, B. C. Bayer, R. Blume, and M. H. V. D. Veen, “Complementary

Metal-Oxide-Semiconductor-Compatible and Self-aligned Catalyst Formation for

Carbon Nanotube Synthesis and Interconnect Fabrication,” J. Appl. Phys. 111 (2012)

064310.

[33] L. J. Wei, L. E. Ting, W. Terry, and C. T. Sheng, “Formation of Nickel-silicide

Selective Emitter by Laser-induced Annealing for P-type Solar Cell,” ECS Meeting

(2011).

[34] H. Iwai, T. Ohguro, and S. Ohmi, “NiSi Silicide Technology for Scaled CMOS,”

Microeletron. Eng. 60 (2002) 157-169.

42

[35] R. Beyers and R. Sinclair, “Metastable Phase Formation in Titanium-Silicon Thin

Films,” J. Appl. Phys. 57 (1985) 5240.

[36] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of Transformation

to Low-Resistivity Phase and Agglomeration of TiSi2 and CoSi2,” IEEE T. Electron

Dev. 38 (1991) 264-269.

[37] K. L. Wang, T. C. Holloway, R. F. Pinizzotto, Z. P. Sobczak, W. R. Hunter, and A. F.

Tash, “Composite TiSi2/N+Poly-Si Low Resistivity Gate Electrode and Interconnect

for VLSI Device Technology,” IEEE T. Electron Dev. 29 (1982) 547-553.

[38] S. S. Lau, J. W. Mayer, and K. N. Tu, “Interactions in the Co/Si Thin film System. I.

Kinetics,” J. Appl. Phys. 49 (1978) 4005-4010.

[39] L. Zhang, Y. Du, H. Xu, and Z. Pan, “Experimental Investigation and

Thermodynamic Description of the Co-Si System.” Thermochemistry 30 (2006) 470-

481.

[40] G. J. Van Gurp and C. Langereis, “Cobalt Silicide Layers on Si. I. Structure and

Growth,” J. Appl. Phys. 46 (1975).

[41] A. H. Van Ommen, C. W. T. BulleLieuwma, and C. Langereis, “Properties of CoSi2

Formed on (001)Si,” J. Appl. Phys. 64 (1988).

[42] M. Tsuchiaki, C. Hongo, A. Takashima, and K. Ohuchi, “Intrinsic Junction Leakage

Generated by Cobalt In-Diffusion during CoSi2 Formation,” Jpn. J. Appl. Phys. 41

(2002) 2437-2444.

[43] A. Lauwers, P. Besser, T. Gutt, A. Satta, M. De Potter, R. Lindsay, N. Roelandts, F.

Loosen, S. Jin, J. Bender, M. Stucchi, C. Vrancken, B. Deweerdt, K. Maex,

“Comparative Study of Ni-Silicide and Co-Silicide for sub 0.25 μm Technologies,”

Microelectron. Eng.. 50 (2000) 103-116.

[44] F. D. Heurle, C. S. Petrsson, L. Slot, and B. Strizker, “Diffusion in Intermetallic

43

Compounds with the CaF2 Structure : A Marker Study of the Formation of NiSi2 Thin

film,” J. Appl. Phys. 53 (1982) 5678-5681.

[45] F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan,

“Thermal Stability Study of NiSi and NiSi2 Thin Films,” Microelectron. Eng. 71

(2004) 104-111.

[46] E. G. Colgan, J. P. Gambino, and B. Cunningham, “Nickel Silicide Thermal Stability

on Polycrystalline and Single Crystalline Silicon,” Mater. Chem. Phy. 46 (1996) 209-

214.

[47] S. L. Cheng, S. W. Lu, and H. Chen, “Interfacial Reactions of 2D Periodic Arrays of

Ni Metal Dots on (001) Si,” J. Phys. Chem. Solids. 69 (2008) 620-624.

[48] J. Y. Yew and L. J. Chen, “Epitaxial Growth of NiSi2 on (111) Si Inside 0.1-0.6 mm

Oxide Openings Prepared by Electron Beam Lithography,” Appl. Phys. Lett. 69 (1996)

999-1001.

[49] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, “Low Temperature Metal

Induced Crystallization of Amorphous Silicon using a Ni Solution,” J. Appl. Phys. 82

(1997).

[50] S. Y. Yoon, C. O. Kim, J. Y. Oh, and J. Jang, “Low Temperature Solid Phase

Crystallization of Amorphous Silicon at 300 oC,” J. Appl. Phys. 84 (1998).

[51] C. Hayzelden and J. L. Batstone, “Silicide Formation and Silicide-mediated

Crystallization of Nickel-Implanted Amorphous Silicon Thin Films,” J. Appl. Phys.

73 (1993) 8279-8289.

[52] Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and Man Wong, “Nickel Induced

Crystallization of Amorphous Silicon Thin Films.” J. Appl. Phys. 84 (1998).

[53] J. W. Mayer and O. J. Marsh, “Ion Implantation in Semiconductors,” Appl. Solid State

Sci. (1969) 239-243.

44

[54] P. Ahmet, T. Shiozawa, K. Nagahiro, T. Nagata, K. Kakushima, K. Tsutsui, T.

Chikyow, and H. Iwai, “Thermal Stability of Ni Silicide Films on Heavily Doped n+

and p+ Si Substrates,” Microelectron. Eng. 85 (2008) 1642-4646.

[55] M. C. Poon, F. Deng, M. Chan, W. Y. Chan, and S. S. Lau, “Resistivity and Thermal

Stability of Nickel Mono-silicide,” Appl. Sur. Sci. 157 (2000) 29-34.

[56] M. C. Poon, M. Chan, W. Q. Zhang, F. Deng, and S. S. Lau, “Stability of NiSi in

Boron-doped Polysilicon Lines,” Micro. Rel. 38 (1998) 1499-1502.

[57] S. R. Das, D. X. Xu, M. Nournia, L. Lebrun, and A. Naem, “Thermal Stability of

Nickel Silicide Films,” Mat. Res. Soc. (1996).

[58] M. Tsuchiaki, K. Ohuchi, and A. Nishiyama, “Suppression of Thermally Induced

Leakage of NiSi-Silicided Shallow Junctions by Pre-Silicide Fluorine Implantation,”

Jap. J. Appl. Phy. 44 (2005) 1673-1681.

[59] J. Luo, Z. J. Qiu, J. Deng, C. Zhao, J. F. Li, W. W. Wang, D. P. Chen, D. P. Wu, M.

Ostling, T. C. Ye, and S. L. Zhang, “Effects of Carbon Pre-silicidation Implant into

Si Substrate on NiSi,” Microelectron. Eng. 120 (2014) 178-181.

[60] C. Ortolland, M. Togo, E. Rosseel, S. Mertens, J. Kittl, P. P. Absil, A. Lauwers, and

T. Hoffmann, “New Carbon-based Thermal Stability Improvement Technique for

NiPt/Si used in CMOS Technology,” Microelectron. Eng. 88 (2011) 578-582.

[61] O. Nakatsuka, K. Okubo, A. Sakai, M. Ogawa, Y. Yasuda, and S. Zaima,

“Improvement in NiSi/Si Contact Properties with C-implantation,” Microelectron.

Eng. 82 (2005) 479-484.

[62] B. Y. Tsui, C. M. Hsieh, Y. R. Hung, Y. Yang, R. Shen, S. Cheng, and T. Lin,

“Improvement of the Thermal Stability of NiSi by Germanium Ion Implantation,” J.

Electronchem. Soc. 157 (2010) 137-143.

[63] T. S. Chao, C. H. Chien, C. P. Hao, M. C. Liaw, C. H. Chu, C. Y. Chang, T. F. Lei, W.

45

T. Sun, and C. H. Hsu, “Suppression of Boron Penetration in P+ Poly-Si Gate Metal-

Oxide-Semiconductor Transistor Using Nitrogen Implantation,” Jpn. J. Appl. Phys.

36 (1997) 1364-1367.

[64] K. Kashihara, T. Yamaguchi, T. Tsutsumi, K. Maekawa, K. Asai, and M. Yoneda,

“Improvement of Thermal Stability of Nickel Silicide using N2 Ion Implantation Prior

to Nickel Film Deposition,” IEEE Electron Dev. (2006) 176-179.

[65] P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, A. T. S. Wee, and L. Chan, “Improved

NiSi Salicide Process Using Presilicide N2

+ Implant for MOSFETs,” IEEE Electron

Dev. 21 (2000) 566-568.

[66] L. W. Cheng, S. L. Cheng, J. Y. Chen, L. J. Chen, and B. Y. Tsui, “Effects of Nitrogen

Ion Implantation on the Formation of Nickel Silicide Contacts on Shallow Junctions,”

Thin Solid Films 355-356 (1999) 412-416.

[67] H. W. Deckman and J. H. Dunsmuir, “Natural Lithography,” Appl. Phys. Lett. 41

(1982) 377-379.

[68] C. Geng, L. Zheng, J. Yu, Q. Yan, X. Wang, G. Shen, and D. Shen, “Monolayer

Colloidal Mask with Tunable Interstice Size for Nanosphere Lithography,” Thin Solid

Film 544 (2013) 83-87.

[69] N. Kwon, K. Kim, S. Sung, I. Yi, and I. Chung, “Highly Conductive and Transparent

Ag Honeycomb Mesh Fabricated using a Monolayer of Polystyrene Spheres,”

Nanotechnology 24 (2013) 235205.

[70] W. Ehrfeld and H. Lehr, “Deep X-ray Lithography For the Production of Three-

Dimensional Microstructures from Metals, Polymers and Ceramics,” Radiat. Phys.

Chem. 45 (1995) 349-365.

[71] K. Wilder, Calvin F. Quate, D. Adderton, R. Bernstein, and V. Elings, “Noncontact

Nanolithography using the Atomic Force Microscope,” Appl. Phys. Lett. (1998).

46

[72] J. W. Lyding, T. C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, “Nanoscale

Patterning and Oxidation of H-passivated Si (100)- 2 × 1 Surfaces with an Ultrahigh

Vacuum Scanning Tunneling Microscope,” Appl. Phys. Lett. 64 (1994) 2010-2012.

[73] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett,

“Modification of Hydrogen-passivated Silicon by a Scanning Tunneling Microscope

Operating in Air,” Appl. Phys. Lett. 56 (1990) 2001-2003.

[74] B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong,

“Fabrication of Size- Tunable Gold Nanoparticles Array with Nanosphere

Lithography, Reactive Ion Etching, and Thermal Annealing,” J. Phys. Chem. 109

(2005) 11100-11109.

[75] S. Huang, Q. Yang, C. Zhang, L. Kong, S. Li, and J. Kang, “Structural Anomalies

Induced by the Metal Deposition Methods in 2D Silver Nanoparticle Arrays Prepared

by Nanosphere Lithography,” Thin Solid Films 536 (2013) 136-141.

[76] M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, “Fabrication of Nanodot and

Nanoring Arrays by Nanosphere Lithography,” Appl. Phys. 63 (1996) 617-619.

[77] J.Boneberg, F. Burmeister, C. Schafle, and P. Leiderer, “The Formation of Nano-Dot

and Nano-Ring Structures in Colloidal Monolayer Lithography,” Langmuir 13 (1997)

7080-7084.

[78] P. Chen, Y. Fan, and Z. Zhong, “The Fabrication and Application of Patterned Si (001)

Substrates with Ordered Pits Via Nanosphere Lithography,” Nanotechnology 20

(2009) 095303.

[79] G. Horneck and B. K. Christa, “Astrobiology : The Quest for the Conditions of Life:

Complexity and Life, Molecular Self-Assembly and the Origin of Life,” Part V 2001,

Springer.

[80] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295

47

(2002) 2418-2421.

[81] S. M. Yang, N. Coombs, and G. A. Ozin, “Micromolding in Inverted Polymer Opals

(MIPO): Synthesis of Hexagonal Mesoporous Silica Opals,” Adv. Mater. 12 (2000)

1940-1944.

[82] H. J. Nam, D. Y. Jung, G. Y, and H. Choi, “Close-Packed Hemispherical Microlens

Array from Two-Dimensional Ordered Polymeric Microspheres,” Langmuir 22 (2006)

7358-7363.

[83] F. Fleischhaker, A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. V. Freymann, I.

Manners, R. Zentel, and G. A. Ozin, “Redox-Tunable Defects in Colloidal Photonic

Crystals,” Adv. Mater. 17 (2005) 2455-2458.

[84] J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles,”

Encyclopedia of Nanosci. and Nanotech. (2003) 1-23.

[85] K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films,”

Colloids Surf. A 109 (1996) 363-374.

[86] P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles,”

Langmuir 10 (1994) 23-36.

[87] P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov, and K. Nagayama, “Capillary Meniscus

Interactions Between Colloidal Particles Attached to a Liquid-Fluid Interface,” J.

Colloid Interface Sci. 151 (1992) 79-94.

[88] P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov, and K. Nagayama,

“Energetical and Force Approaches to the Capillary Interactions between Particles

Attached to a Liquid-Fluid Interface,” J. Colloid Interface Sci. 155 (1993) 420-437.

[89] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K.

Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex

Particles on Substrates,” Langmuir 8 (1992) 3183-3190.

48

[90] F. Jarai-Szabo, S. Astilean, and Z. Neda, “Understanding Self-Assembled

Nanosphere Patterns,” Chem. Phys. Lett. 408 (2005) 241-246.

[91] Y. Li, W. Cai, G. Duan, F. Sun, B. Cao, and F. Lu, “2D Nanoparticle Arrays by Partial

Dissolution of Ordered Pore Films,” Mater. Lett. 59 (2005) 276-279.

[92] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array

Pattern Fabricated With Self-Assembled Nanosphere Template,” IEEE Sensors

Journal 8 (2008) 880-884.

[93] V. Ng, Y. V. Lee, B. T. Chen, and A. O. Adeyeye, “Nanostructure Array Fabrication

with Temperature-Controlled Self-Assembly Techniques,” Nanotechnology 13 (2002)

554-558.

[94] P. Jiang and M. J. McFarland, “Large-scale Fabrication of Wafer-Size Colloidal

Crystals, Macroporous Polymers and Nanocomposites by Spin-coating,” J. Am.

Chem. Soc. 126 (2004) 13778-13786.

[95] J. Chen, P. Dong, D. Di, C. Wang, H. Wang, J. Wang, and X. Wu, “Controllable

Fabrication of 2D Colloidal-crystal Films with Polystyrene Nanospheres of Various

Diameters by Spin-Coating,” Appl. Sur. Sci. 270 (2013) 6-15.

[96] D. Wang and H. Mohwald, “Rapid Fabrication of Binary Colloidal Crystals by

Stepwise Spin-Coating,” Adv. Mater. 16 (2004) 244-247.

[97] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic

Nanoparticles,” Colloids Surf. Physicochem. Eng. Aspects 219 (2003) 1-6.

[98] G. H. Jeong, J. K. Park, K. K. Lee, J. H. Jang, C. H. Lee, H. B. Kang, C. W. Yang, S.

J. Suh, “Fabrication of Low-cost Mold and Nanoimprint Lithography using

Polystyrene Nanosphere,” Microelectron. Eng. 87 (2010) 51-55.

[99] E. Sirotkin, J. D. Apweiler, and F. Y. Ogrin, “Macroscopic Ordering of Polystyrene

Carboxylate-Modified Nanospheres Self-Assembled at the Water-Air Interface,”

49

Langmuir 13 (2010) 10677-10683.

[100] M. Retsch, K. H. Dostert, S. K. Nett, N. Vogel, J. S. Gutmann, and U. Jonas,

“Template-Free Structureing of Colloidal Hetero-Monolayers by Inkjet Printing and

Particle Floating,” Soft Mater. 6 (2010) 2403-2412.

[101] M. Marquez and B. P. Grady, “The Use of Surface Tension to Predict the Formation

of 2D Arrays of Latex Spheres Formed via the Langmuir-Blodgett-Like Technique,”

Langmuir 20 (2004) 10677-10683.

[102] S. L. Cheng, Y. H. Lin, S. W. Lee, T. Lee, H. Chen, J. C. Hu, and L. T. Chen,

“Fabrication of Size-tunable, Periodic Si Nanohole Arrays by Plasma Modified

Nanosphere Lithography and Anisotropic Wet Etching,” Appl. Surf. Sci. 263 (2012)

430-435.

[103] J. Ji, H. Zhang, Y. Qiu, L. Wang, Y. Wang, and L. Hu, “Fabrication and

Photoelectrochemical Properties of Ordered Si Nanohole Arrays,” Appl. Surf. Sci.

292 (2014) 86-92.

[104] H. C. Wu, X. B. Xu, M. Y. He, M. Q. Zhang, K. J. Ma, and M. D. Bao, “Fabrication

of Size-tunable Antireflective Nanopillar Array using Hybrid Nano-patterning

Lithography,” Surf. Coat. Tech. 240 (2014) 413-418.

[105] J. C. Hulteen and R. P. Van Duyne, “Nanosphere Lithography: Amaterials General

Fabrication Process for Periodic Particle Array Surface,” J. Vac. Sci. Tech. A13 (1995)

1553-1558.

[106] A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow

Nanosphere Lithography: Simulation and Experiment,” Nanoletters 4 (2004) 1359-

1363.

[107] C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne,

“Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size,

50

Shape, and Interparticle Spacing,” J. Phys. Chem. 106 (2002) 1898-1902.

[108] M. T. Zin, K. Leong, N. Y. Wong, H. Ma, and A. Jen, “Plasmon Resonant Structures

with Unique Topographic Characteristics and Tunable Optical Properties for Surface-

Enhanced Raman scattering,” Nanotechnology 18 (2007) 455301-1~6.

[109] Z. Wang, J. Liu, H. Dong, Y. Li, P. Zhan, and M. Zhu, “A Fcile Route to Synthesis of

Ordered Arrays of Metal Nanoshells with a Controllable Morphology,” Jpn. J. Appl.

Phys. 45 (2006) 582-584.

[110] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, and C. J. Summers, “Large-scale

Fabrication of Ordered Nanobowl Arrays,” Nano Lett. 4 (2004) 2223-2226.

[111] G. Zhang and D. Wang, “Fabrication of Heterogeneous Binary Arrays of

Nanoparticles via Colloidal Lithography,” J. Am. Chem. Soc. 130 (2008) 5616-5617.

[112] Z. A. Lewicka, W. W. Yu, and V. L. Colvin, “An Alternative Approach to Fabricate

Metal Nanoring Structures Based on Nanosphere Lithography,” P. Soc. Photo-Opt.

Ins. 810213 (2011) 1-7.

[113] L. Johnson and D. A. Walsh, “Deposition of Silver Nanobowl Arrays using

Polystyrene Nanospheres Both as Reagents and as the Templating Material,” J. Mater.

Chem. 21 (2011) 7555-7558.

[114] M. J . Klein, M. Guillaum´ee, B. Wenger, L. A. Dunbar, J. Brugger, H. Heinzelmann,

and R. Pugin,“Inexpensive and Fast Wafer-scale Fabrication of Nanohole Arrays in

Thin Gold Films for Plasmonics,”Nanotechnology 21 (2010) 205301-205308.

[115] Y. Zhang, X. Wang, and Y. Wang, “Ordered Nanostructures Array Fabricated by

Nanosphere Lithography,” J. Alloys Compd. 452 (2008) 473-477.

[116] X. D. Wang, C. Lao, E. Graugnard, C. J. Summers, and Z. L. Wang, “Large-size

Liftable Inverted-nanobowl Sheets as Reusable Masks for Nanolithography,” Nano

Lett. 5 (2005) 1784-1788.

51

[117] S. L. Cheng, S. W. Lu, C. H. Li, Y. C. Chang, C. K. Huang, and H. Chen, “Fabrication

of Periodic Nickel Silicide Nanodot Arrays using Nanosphere Lithography,” The

Solid Films 494 (2006) 307-310.

[118] Md. Ahamad Mohiddon and M. Ghanashyam
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明