參考文獻 |
[1] E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity.” Chemical Society Reviews 38 (2009) 1759-1782.
[2] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, “Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells.” Physical Review B 53 (1996) 13242-13245.
[3] J. Tang, L. Brzozowski, D. A. R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A. G. P. Abraham, D. Jamakosmanovic, and E. H. Sargent , “Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air-and light-stability.” American Chemical Society Nano 4 (2010) 869-878.
[4] P. I. Wang, Y. P. Zhao, G. C. Wang, and T. M. Lu, “Novel growth mechanism of single crystalline Cu nanorods by electron beam irradiation.” Nanotechnology 15 (2004) 218-222.
[5] P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang, and X. Zheng, “Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.” Nano Letters 14 (2014) 1099-1105.
[6] W. Wei, X. Yibing, W. Yong, D. Hongxiu, X. Chi, and T. Fang, “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays. ” Microchimica Acta 181 (2014) 381-387.
[7] N. A. Malvadkar, M. J. Hancock, K. Sekeroglu, W. J. Dressick, and M. C. Demirel, “An engineered anisotropic nanofilm with unidirectional wetting properties.” Nature Materials 9 (2010) 1023-1028.
[8] B. Mitra and K. P. Ghatak, “On the field emission from HgTe/CdTe supperlattices with graded structures in the presence of a quantizing magnetic field.” Physics Letters A 146 (1990) 357-361.
[9] S. Nakamura, M. Senoh, N. Iwasa, S. I. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes.” Japanese Journal of Applied Physics 34 (1995) L1332-L1335.
[10] B.Bahadur, J. D. Sampica, J. L. Tchon, and A Butterfield "Direct dry film optical bonding‐A low‐cost, robust, and scalable display lamination technology." Journal of the Society for Information Display 19 (2011) 732-740.
[11] S. P. Chow and G. L. Harding, “Effect of antireflection coatings on the transmittance of glass tubular and plane double glazed covers for flat plate solar collectors.” Solar Energy 34 (1985) 183-186.
[12] H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review.” Energy & Environmental Science 4 (2011) 3779-3804.
[13] F. Rubio, J. Denis, J. M. Albella, and J. M. M. Duart, “Sputtered Ta2O5 antireflection coatings for silicon solar cells.” Thin Solid Films 90 (1982) 405-408.
[14] A. A. Tesar, M. Balooch, K. W. Shotts, and W. J. Siekhaus, “Morphology and laser damage studies by atomic force microscopy of e-beam evaporation deposited antireflection and high-reflection coatings.” International Society for Optics and Photonics 1441 (1990) 228.
[15] S. Ogura, N. Sugawara and R. Hiraga, “Refractive index and packing density for MgF2 films: correlation of temperature dependence with water sorption.” Thin Solid Films 30 (1975) 3-10.
[16] W. J. Coleman, “Evolution of optical thin films by sputtering.” Applied Optics 13 (1974) 946-951.
[17] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm.” Optics Express 16 (2008) 5290-5298.
[18] D. Chen, “Anti-reflection (AR) coatings made by sol–gel processes: a review.” Solar Energy Materials and Solar Cells 68 (2001) 313-336.
[19] P. Lalanne and M. Hutley, “The optical properties of artificial media structured at a subwavelength scale.” Encyclopedia of Optical Engineering (2003) 62-71.
[20] T. Lohmueller, R. Brunner, J. P. Spatz, “Improved properties of optical surfaces by following the example of the moth eye.” Biomimetics Learnings from Nature (2010) 451-466.
[21] S. J. Wilson and M. C. Hutley, “The optical properties of moth eye antireflection surfaces.” Journal of Modern Optics 29 (1982) 993-1009.
[22] C. H. Sun, P. Jiang and Bin Jiang, “Broadband moth-eye antireflection coatings on silicon.” Applied Physics Letters 92 (2008) 061112.
[23] Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott,”Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting.” Applied Physics Letters 94 (2009): 263118.
[24] C. J. Ting, C. F. Chen, and C. P. Chou, “Subwavelength structures for broadband antireflection application.” Optics Communications 282 (2009) 434-438.
[25] X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, and T. T. B.Yang, “Morphology and wettability control of silicon cone arrays using colloidal lithography,” Langmuir 25 (2009) 7375-7382.
[26] Y. Kanamori, E. Roy, and Y. Chen, “Antireflection sub-wavelength gratings fabricated by spin-coating replication,” Microelectronic Engineering 78 (2005) 287-293.
[27] T Taguchi, H Hayashi, A Fujii, and K Tsuda, “80.3: Distinguished paper: ultra‐low‐reflective 60‐in. LCD with uniform moth‐eye surface for digital signage.” SID Symposium Digest of Technical Papers. 41 (2010) 1196-1199.
[28] U. Yoshihiro, “Continuous roll imprinting of moth eye antireflection surface using anodic porous alumina.” Springer Netherlands (2012): 915-917.
[29] T. Yanagishita, K. Nishio , and H. Masuda, “Antireflection polymer hole array structures by imprinting using metal molds from anodic porous alumina.” Applied Physics Express 1 (2008) 067004.
[30] L. Soserov and R. Todorov, “Optical properties of thin nanoporous aluminium oxide films formed by anodization.” Bulgarian Chemical Communications 45 (2013) 47-50.
[31] J. Wang, C.W. Wang, Y. Li, and W.M. Liu, “Optical constants of anodic aluminum oxide films formed in oxalic acid solution.” Thin Solid Films 516 (2008) 7689-7694.
[32] T. D. Lazzara, K. H. Aaron Lau, and K. Wolfgang, “Mounted nanoporous anodic alumina thin films as planar optical waveguides.” Journal of Nanoscience and Nanotechnology 10 (2010) 4293-4299.
[33] M. Pashchanka, S. Yadav, T. Cottr, and J. J. Schneider, “Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors.” Nanoscale 6 (2014) 12877-12883.
[34] T. S. Shih, P. S. Wei, and Y.S. Huang, “Optical properties of anodic aluminum oxide films on Al alloys.” Surface and Coatings Technology 202 (2008) 3298-3305.
[35] G. E. Moore, “Cramming more components onto integrated circuits.” Proceedings of the IEEE 86 (1998) 82-85.
[36] M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI.”, Institute of Electrical and Electronic Engineers (1995) 241-244.
[37] C. Ryu, K. W. Kwon, A. L. S. Loke, and H. Lee, “Microstructure and reliability of copper interconnects.” Institute of Electrical and Electronic Engineers 46 (1999) 1113-1120.
[38] A. V. Vairagar, S. G. Mhaisalkar and, A. Krishnamoorthy, “Effect of surface treatment on electromigration in sub-micron Cu damascene interconnects,” Thin Solid Films 462 (2004) 325-329.
[39] C. N. Liao, K. C. Chen, W. W. Wu, and L. J. Chen, "In-situ transmission electron microscopy study of nanotwinned copper under electromigration." Institute of Electrical and Electronic Engineers (2010) 254-255.
[40] J. Tao, N. W. Cheung, and C. Hu, "Electromigration characteristics of copper interconnects." Institute of Electrical and Electronic Engineers 14 (1993) 249-251.
[41] F. M. d’Heurle, “The effect of copper additions on electromigration in aluminum thin films.” Metallurgical Transactions 2 (1971) 683-689.
[42] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper.” Journal of Materials Research 18 (2003) 2544-2548.
[43] P. C. Wang and R. G. Filippi, “Electromigration threshold in copper interconnects.” Applied Physics Letters 78 (2001) 3598-3600.
[44] C. Y. Tsai, C. H. Lin, and M. S. Yang, "Preventing electromigration of copper; enhanced wetting ability on surface of under layer." U.S. Patent No. 6,429,115. 6 Aug. 2002.
[45] 白春禮,“Nanometer scale science and technology,”凡異出版社
[46] 李正中,“薄膜光學與鍍膜技術”藝軒圖書出版社
[47] 白木 靖寬,“薄膜工程學” 全華科技出版社
[48] X. Wang and G. R. Han, “Fabrication and characterization of anodic aluminum oxide template.” Microelectronic Engineering 66 (2003) 166-170.
[49] A. Belwalkar, E. Grasing, W. Van Geertruyden , Z. Huang, and W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes.” Journal of Membrane Science 319 (2008) 192-198.
[50] S. K. Hwang, S. H. Jeong, H.Y. Hwang, O. J. Lee, and K. H. Lee, “Fabrication of highly ordered pore array in anodic aluminum oxide.” Korean Journal of Chemical Engineering 19 (2002) 467-473.
[51] N. Itoh, K. Kato, T. Tsuji, and M. Hongo, “Preparation of a tubular anodic aluminum oxide membrane.” Journal of Membrane Science 117 (1996) 189-196.
[52] K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization.” American Chemical Society Nano 2 (2008) 302-310.
[53] G. E. Thompson, “Porous anodic alumina: fabrication, characterization and applications.” Thin Solid Films 297 (1997) 192-201.
[54] O. Jessensky, F. Müller and U. Gösele, “Self‐organized formation of hexagonal pore structures in anodic alumina.” Journal of the Electrochemical Society 145 (1998) 3735-3740.
[55] O. Jessensky, F. Müller , and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina.” Applied Physics Letters 72 (1998) 1173-1175.
[56] C. Ottone, M. Laurenti, K. Bejtka, A. Sanginario ,and V. Cauda, “The effects of the film thickness and roughness in the anodization process of very thin aluminum films.” Journal of Materials Science and Nanotechnology 1 (2014) 1-9
[57] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.” Science 268 (1995) 1466-1468.
[58] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina.” Applied Physics Letters 78 (2001) 826-828.
[59] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina.” Advanced Materials 13 (2001) 189-192.
[60] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces.” Applied Physics Letters 78 (2001) 120-122.
[61] S. Z. Chu, K. Wada, S. Inou, and S. Todoroki, “Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate.” Journal of the Electrochemical Society 149 (2002) B321-B327.
[62] P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach, and M. L. Myrick, “Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support.” Electrochemical and Solid-State Letters 6 (2003) B42-B45.
[63] W. Zaghdoudi, M. Gaidi, and R. Chtourou, “Microstructural and optical properties of porous alumina elaborated on glass substrate.” Journal of Materials Engineering and Performance 22 (2013) 869-874.
[64] C. J. Yang, S. W. Liang, P. W. Wu, C. Chen, and J. M. Shieh, “Fabrication of anodic aluminum oxide film on large-area glass substrate.” Electrochemical and Solid-State Letters 10 (2007) C69-C71
[65] M. P. Houng, W. L. Lu, T. H. Yang, and K. W. Lee, “Characterization of the nanoporous template using anodic alumina method.” Journal of Nanomaterials 2014 (2014) 130716.
[66] K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, and J Kang, “Asymmetric light reflectance effect in AAO on glass. ”Optics Express 19 (2011) 1301-1309.
[67] S. J. Park, H. S. Lee, J. H. Cho, and K. W. Lee, “Nanoporous anodic alumina film on glass: improving transparency by an ion-drift process.” Electrochemical and Solid-State letters 8 (2005) D5-D7.
[68] H. Zhuo, F. Peng, L. Lin, Y. Qu, and F. Lai, “Optical properties of porous anodic aluminum oxide thin films on quartz substrates.” Thin Solid Films 519 (2011) 2308-2312.
[69] Y. Wu and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth.” Journal of the American Chemical Society 123 (2001) 3165-3166.
[70] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires.” Nano Letters 2 (2002) 717-720.
[71] K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurišić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, “Defects in ZnO nanorods prepared by a hydrothermal method, ” The Journal of Physical Chemistry B 110 (2006) 20865-20871.
[72] Y. C. Kong, D.P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Applied Physics Letters 78 (2001) 407-409.
[73] P. C. Chang, Z. Fan, D. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, and J. G. Lu, “ZnO nanowires synthesized by vapor trapping CVD method.” Chemistry of Materials 16 (2004) 5133-5137.
[74] M. P. Zach, K. H. Ng, and R. M. Penner, “Molybdenum nanowires by electrodeposition.” Science 290 (2000) 2120-2123.
[75] R. Al-Salman, J. Mallet, M. Molinari, P. Fricoteaux, F. Martineau, M. Troyon, S. Zein El Abedin, and F. Endres, “Template assisted electrodeposition of germanium and silicon nanowires in an ionic liquid.” Physical Chemistry Chemical Physics 10 (2008) 6233-6237.
[76] K. V. Singh, A. A. Martinez-Morales, G. T. S. Andavan, K. N. Bozhilov, and M. Ozkan “A simple way of synthesizing single-crystalline semiconducting copper sulfide nanorods by using ultrasonication during template-assisted electrodeposition.” Chemistry of Materials 19 (2007) 2446-2454.
[77] H. Liu, F. Wang, Y. Zhao, J. Liu, K. C. Park, and M.Endo,“Synthesis of iron–palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution.” Journal of Electroanalytical Chemistry 633 (2009) 15-18.
[78] M. Zhang, S. Lenhert, M. Wang, L. Chi, N. Lu, H. Fuchs, and N. B. Ming, “Regular Arrays of Copper Wires Formed by Template‐Assisted Electrodeposition.” Advanced Materials 16 (2004) 409-413.
[79] Y. Lai, Y. Huang, H. Wang, J. Huang, Z. Chen, and C. Lin, “Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO2 nanotube surface by template-assisted electrodeposition.” Colloids and Surfaces B 76 (2010) 117-122.
[80] N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Fabrication of Pd–Fe nanowires with a high aspect ratio by AAO template-assisted electrodeposition.” Journal of Alloys and Compounds 509 (2011) 3894-3898.
[81] SZ. El. Abedin, A. Prowald, and F. Endres, “Fabrication of highly ordered macroporous copper films using template-assisted electrodeposition in an ionic liquid.” Electrochemistry Communications 18 (2012) 70-73.
[82] M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” Institute of Electrical and Electronic Engineers (1995) 241-244.
[83] C. J .Shute, B. D. Myers, S. Xie, S. Y. Li, T. W. Barbee, A. M. Hodge, and J. R. Weertman, “Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins.” Acta Materialia 59 (2011) 4569-4577.
[84] H. Y. Hsiao, C. M. Liu, H. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen, and K. N. Tu, “Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper.” Science 336 (2012) 1007-1010.
[85] D. Xu, V. Sriram, V. Ozolins, J. M. Yang, K. N. Tu, G. R. Stafford, C. Beauchamp, I. Zienert, H. Geisler, P. Hofmann, and E. Zschech, “Nanotwin formation and its physical properties and effect on reliability of copper interconnects.” Microelectronic Engineering 85 (2008) 2155-2158.
[86] N. Li, J. Wang, J. Y. Huang, A. Misra, and X. Zhang ,”Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu.” Scripta Materialia 64 (2011) 149-152.
[87] E. C. C. Yeh and K. N. Tu, “Numerical simulation of current crowding phenomena and their effects on electromigration in very large scale integration interconnects.” Journal of Applied Physics 88 (2000) 5680-5686.
[88] C. Ryu, K. W. Kwon, A. L. S. Loke, H. Lee, H. Nogami, T. Dubin, V. M, and S. S. Wong, “Microstructure and reliability of copper interconnects.” Institute of Electrical and Electronic Engineers 46 (1999) 1113-1120.
[89] L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, “Ultrahigh strength and high electrical conductivity in copper.” Science 304 (2004) 422-426.
[90] K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, and K. N. Tu, “Observation of atomic diffusion at twin-modified grain boundaries in copper,” Science 321 (2008) 1066-1069.
[91] C. N. Liao, Y. C. Lu, and D. Xu, “Modulation of crystallographic texture and twinning structure of cu nanowires by electrodeposition,” Journal of the Electrochemical Society 160 (2013) D207-D211.
[92] D. Xu, W. L. Kwan, K. Chen, X. Zhang, V. Ozolins, and K. N. Tu,. "Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition." Applied Physics Letters 91 (2007) 254105.
[93] D. Xu, V. Sriram, V. Ozolins, J. M. Yang, K. N. Tu, G. R. Stafford, and C Beauchamp
, "In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper." Journal of Applied Physics 105 (2009) 023521.
|