博碩士論文 102223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.223.238.44
姓名 陳錫宏(Xi-Hoing Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 內環狀官能基之中孔洞矽材應用與類沸石咪唑骨架材料包覆酵素的催化探討
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文分成兩個部分:

第一部分:本實驗室成功將先前發表的新型環狀中孔洞材料XC-CAR-10應用於鑭系金屬吸附,X代表雙胺基化合物中間的碳數。此種環狀中孔洞材料利用大環分子效應提升其對鑭系金屬的吸附能力,其中3C-CAR-10能與螫合金屬離子形成六圓環穩定結構,且對於鉺離子具有相當良好的吸附能力,其飽和吸附能力約為290 µg/mg。並藉由環狀中孔洞材料中鉺離子和磷酸化蛋白質的螯合作用,使用固定化金屬離子親和層析法 (IMAC),使磷酸化蛋白質成功被純化出來,其純化回收率可高達百分之九十。

第二部份:本實驗室先前成功將酵素置於ZIF-90的合成環境中進行從頭合成 (de novo) 反應,得到保留酵素活性的複合孔洞材料。但材料中酵素催化反應速率與天然狀態相比仍有下降,推測載體粒子大小為原因之一。故本實驗室依照文獻改良得到快速合成微米級ZIF-8的方法,並以類似條件合成奈米級ZIF-8,同時得到最佳化條件,期望能利用此兩種尺寸的ZIF-8對酵素的催化反應速率進行後續探討。

摘要(英) The first part of my research is based on our previous report, which demonstrated the synthesis of annular-functionalized mesoporous silica with controllable size (namely, XC-CAR-10, where X represents the number of carbons in the diamines used) with a fabulous adsorption ability to metal ion owing to macrocyclic effect. Herein, we applied the annular-functionalized mesoporous silica for the lanthanide ion adsorption and further utilized the lanthanide-adsorbed mesoporous silica for phosphorylated protein purification by use of Immobilized Metal Affinity Chromatography (IMAC). It is worth noting that adsorption of 3C-CAR-10 towards ~290 µg/mg of Er3+ was achieved, and the Er3+-3C-CAR-10 showed the remarkable purification capability and selectivity of phosphorylated peptide with about 90% elution recovery.

The second part of my research is based on our previous report, which demonstrated a de novo synthesis of enzyme@ZIF-90 (Zeolitic imidazolate framework-90) and retained the enzyme activity. However, the catalytic rate of the embedded enzymes was still much slower than the native ones. One of the probable reasons of the loss in catalytic rate was likely attributed to the mass transfer owing to the particle size of carriers. Thus, the rapid syntheses of ZIF-8 with nano- and micro- size are modified and optimized in order to determine the connection between the catalytic rate of the embedded enzyme and mass transfer with size-dependent effect.

關鍵字(中) ★ 內環狀
★ 中孔洞材料
★ 磷酸化蛋白
★ 類沸石咪唑骨架材料
★ 粒徑大小
★ 催化效率
關鍵字(英)
論文目次 中文摘要 I

Abstract II

目錄 IV

圖目錄 VII

表目錄 IX

Part I 1

第一章 緒論 1

1-1 中孔洞分子篩材料 1

1-1-1 簡介 1

1-1-2 發展史 2

1-1-3 應用 5

1-2 鑭系金屬近年的發展與毒性研究簡述 8

1-3 吸附理論 9

1-3-1 簡介 9

1-3-2 等溫吸附模式 10

1-3-2-1 Freundlich 等溫吸附模式 11

1-3-2-2 Langmuir 等溫吸附模式 12

1-3-3 動力吸附模型 13

1-4 蛋白質純化方法簡介 15

1-5 固定化金屬親和層析法發展與應用 17

1-5-1 載體 18

1-5-2 螫合基 18

1-5-3 金屬離子 19

1-6 磷酸化蛋白質與其純化方法 21

1-6-1 磷酸化蛋白質 21

1-6-2 磷酸化蛋白質之純化方法 22

1-7 研究動機與目標 24

第二章 材料合成與鑑定部分 25

2-1 實驗藥品與設備 25

2-1-1 實驗藥品 25

2-1-2 實驗設備 26

2-2 鑑定設備與原理 27

2-2-1 實驗儀器 27

2-2-2 X射線粉末繞射儀 (PXRD) 28

2-2-3 氮氣等溫吸/脫附儀 (ASAP) 29

2-2-4 傅立葉轉換紅外線吸收光譜儀 (FT-IR) 32

2-2-5 固態核磁共振儀 (solid state NMR) 33

2-2-6 紫外線可見光吸收光譜儀 (UV-Vis) 34

2-3 中孔洞材料合成與鑑定 35

2-3-1 SBA-15 合成步驟 35

2-3-2 合成具羧酸官能基的SBA-15 36

2-3-3 移除中孔洞材料中的模板 36

2-3-4 合成具環狀結構的XC-CAR-10 37

第三章 實驗部分 39

3-1 環狀結構CAR-10系列材料吸附鑭系金屬實驗 39

3-2 不同pH對鑭系金屬吸附的影響 39

3-3 環狀結構CAR-10材料與鉺離子的飽和吸附實驗 40

3-4 環狀結構CAR-10材料的動力學吸附實驗 40

3-5 磷酸化蛋白純化實驗 41

3-5-1 未吸附鉺的SBA-15材料蛋白質純化步驟 41

3-5-2 未吸附鉺的CAR-10材料蛋白質純化步驟 42

3-5-3 未吸附鉺的環狀結構CAR-10材料蛋白質純化步驟 42

3-5-4 有吸附鉺的環狀結構CAR-10材料蛋白質純化步驟 43

3-6 蛋白質純化分析方法 44

3-6-1 十二烷基磺酸鈉-聚丙烯醯胺膠體電泳 (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis, SDS-PAGE) 44

3-6-2 蛋白質濃度定量 48

第四章 實驗結果與討論 49

4-1 UV-Vis吸收光譜檢量線製作 49

4-2 環狀結構CAR-10系列材料吸附鑭系金屬的實驗結果 50

4-3 不同pH值對鑭系金屬吸附的實驗結果 53

4-4 環狀結構CAR-10材料的鉺離子飽和吸附實驗結果 54

4-5 環狀結構CAR-10材料的動力學吸附實驗結果 55

4-6 蛋白質純化結果 57

第五章 結論 63

Part II 64

第六章 緒論 64

6-1 金屬有機骨架材料 64

6-2 類沸石咪唑骨架材料 66

6-2-1 簡介 66

6-2-2 發展史 67

6-2-3 應用 68

6-3 類沸石咪唑骨架材料-8 70

6-4 固定化酵素 (Immobilized enzyme) 71

6-5 研究動機與目標 76

第七章 實驗部分 77

7-1 實驗藥品與設備 77

7-1-1 實驗藥品 77

7-1-2 實驗設備 77

7-2 鑑定儀器與原理 78

7-2-1 實驗儀器 78

7-2-2 場發掃描式電子顯微鏡 (SEM) 78

7-3 類沸石咪唑骨架材料-8 (ZIF-8) 的合成 79

7-3-1 在純水相中快速合成微米級ZIF-8 80

7-3-2 在純水相中快速合成奈米級ZIF-8 80

第八章 結果與討論 81

8-1 類沸石咪唑骨架材料-8 (ZIF-8) 作為載體的條件最佳化 81

8-1-1 不同反應時間的微米級 ZIF-8 合成結果討論 81

8-1-2 不同反應時間的奈米級 ZIF-8 合成結果討論 82

第九章 結論 84

第十章 參考資料 85

第十一章 附錄 95

參考文獻 1. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure and Applied Chemistry, 1972; Vol. 31, p 577.

2. Lee, C. H.; Lin, T. S.; Mou, C. Y., Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4 (2), 165-179.

3. Hudson, S. P.; Padera, R. F.; Langer, R.; Kohane, D. S., The biocompatibility of mesoporous silicates. Biomaterials 2008, 29 (30), 4045-4055.

4. Wang, S.; Zhang, M.; Zhang, W., Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catalysis 2011, 1 (3), 207-211.

5. Niu, N.; He, F.; Ma, P. a.; Gai, S.; Yang, G.; Qu, F.; Wang, Y.; Xu, J.; Yang, P., Up-Conversion Nanoparticle Assembled Mesoporous Silica Composites: Synthesis, Plasmon-Enhanced Luminescence, and Near-Infrared Light Triggered Drug Release. ACS Applied Materials & Interfaces 2014, 6 (5), 3250-3262.

6. Shieh, F.-K.; Hsiao, C.-T.; Wu, J.-W.; Sue, Y.-C.; Bao, Y.-L.; Liu, Y.-H.; Wan, L.; Hsu, M.-H.; Deka, J. R.; Kao, H.-M., A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals. Journal of Hazardous Materials 2013, 260 (0), 1083-1091.

7. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.

8. McBain, J. W., The Sorption of Gases and Vapours by Solids. G. Routledge & sons, Limited: 1932.

9. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.

10. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.

11. (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843; (b) Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L., Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chemistry of Materials 1994, 6 (12), 2317-2326.

12. (a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321; (b) Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267 (5199), 865-867.

13. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548-552.

14. (a) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568; (b) Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M., Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials 1998, 10 (2), 161-165; (c) Stein, A.; Melde, B. J.; Schroden, R. C., Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials 2000, 12 (19), 1403-1419.

15. (a) Yang, Q.; Wang, S.; Fan, P.; Wang, L.; Di, Y.; Lin, K.; Xiao, F.-S., pH-Responsive Carrier System Based on Carboxylic Acid Modified Mesoporous Silica and Polyelectrolyte for Drug Delivery. Chemistry of Materials 2005, 17 (24), 5999-6003; (b) Lin, Q.; Huang, Q.; Li, C.; Bao, C.; Liu, Z.; Li, F.; Zhu, L., Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. Journal of the American Chemical Society 2010, 132 (31), 10645-10647; (c) Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H.-H.; Wang, X.-R., Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society 2011, 133 (5), 1278-1281.

16. Walcarius, A.; Mercier, L., Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry 2010, 20 (22), 4478-4511.

17. Furrer, A., Magnetic properties of rare-earth metals edited by R. J. Elliott. Acta Crystallographica Section A 1974, 30 (1), 125.

18. (a) Aime, S.; Fasano, M.; Terreno, E., Lanthanide(III) chelates for NMR biomedical applications. Chemical Society Reviews 1998, 27 (1), 19-29; (b) Bornhop, D. J.; Hubbard, D. S.; Houlne, M. P.; Adair, C.; Kiefer, G. E.; Pence, B. C.; Morgan, D. L., Fluorescent Tissue Site-Selective Lanthanide Chelate, Tb-PCTMB for Enhanced Imaging of Cancer. Analytical Chemistry 1999, 71 (14), 2607-2615; (c) Penfield, J. G.; Reilly, R. F., What nephrologists need to know about gadolinium. Nat Clin Pract Neph 2007, 3 (12), 654-668.

19. (a) Zheng, W.; Tu, D.; Huang, P.; Zhou, S.; Chen, Z.; Chen, X., Time-resolved luminescent biosensing based on inorganic lanthanide-doped nanoprobes. Chemical Communications 2015, 51 (20), 4129-4143; (b) Heffern, M. C.; Matosziuk, L. M.; Meade, T. J., Lanthanide Probes for Bioresponsive Imaging. Chemical Reviews 2014, 114 (8), 4496-4539.

20. Thompson, K. H.; Orvig, C., Editorial: Lanthanide compounds for therapeutic and diagnostic applications. Chemical Society Reviews 2006, 35 (6), 499-499.

21. (a) Hirano, S.; Suzuki, K. T., Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives 1996, 104 (Suppl 1), 85-95; (b) Gupta, M.; Meenashisundaram, G. K., Insight into Designing Biocompatible Magnesium Alloys and Composites: Processing, Mechanical and Corrosion Characteristics. Springer: 2015.

22. 夏青, 刘., 杨晓达, 王夔, 稀土神经毒性研究. 中国科学 化学 2012, 42 (9), 1308-1314.

23. Bennett, C. L.; Qureshi, Z. P.; Sartor, A. O.; Norris, L. B.; Murday, A.; Xirasagar, S.; Thomsen, H. S., Gadolinium-induced nephrogenic systemic fibrosis: the rise and fall of an iatrogenic disease. Clinical Kidney Journal 2012, 5 (1), 82-88.

24. Freundlich, H.; Leipzig, U., Über die Absorption in Lösungen. Universität Leipzig: 1906.

25. Langmuir, I., THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society 1918, 40 (9), 1361-1403.

26. Lagergren, S. Y., Zur Theorie der sogenannten Adsorption gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1898, 24 (4), 1-39.

27. Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. Process Biochemistry 1999, 34 (5), 451-465.

28. J, Z. H., The configuration of cobaltodihistidine and oxy-bis (cobaltodihistidine). J Natl Cancer Inst 1948, 9 (1), 1-11.

29. Porath, J.; Carlsson, J. A. N.; Olsson, I.; Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258 (5536), 598-599.

30. Hochuli, E.; Döbeli, H.; Schacher, A., New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. Journal of Chromatography A 1987, 411 (0), 177-184.

31. Chaga, G. S., Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. Journal of Biochemical and Biophysical Methods 2001, 49 (1–3), 313-334.

32. Pearson, R. G., Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.

33. Ueda, E. K. M.; Gout, P. W.; Morganti, L., Current and prospective applications of metal ion–protein binding. Journal of Chromatography A 2003, 988 (1), 1-23.

34. Kumar, A.; Galaev, I. Y.; Mattiasson, B., Metal chelate affinity precipitation: a new approach to protein purification. Bioseparation 1998, 7 (4-5), 185-194.

35. Cheng, H.-C.; Qi, R. Z.; Paudel, H.; Zhu, H.-J., Regulation and Function of Protein Kinases and Phosphatases. Enzyme Research 2011, 2011, 3.

36. Baker, A. F.; Dragovich, T.; Ihle, N. T.; Williams, R.; Fenoglio-Preiser, C.; Powis, G., Stability of Phosphoprotein as a Biological Marker of Tumor Signaling. Clinical Cancer Research 2005, 11 (12), 4338-4340.

37. Ptacek, J.; Devgan, G.; Michaud, G.; Zhu, H.; Zhu, X.; Fasolo, J.; Guo, H.; Jona, G.; Breitkreutz, A.; Sopko, R.; McCartney, R. R.; Schmidt, M. C.; Rachidi, N.; Lee, S.-J.; Mah, A. S.; Meng, L.; Stark, M. J. R.; Stern, D. F.; De Virgilio, C.; Tyers, M.; Andrews, B.; Gerstein, M.; Schweitzer, B.; Predki, P. F.; Snyder, M., Global analysis of protein phosphorylation in yeast. Nature 2005, 438 (7068), 679-684.

38. Hubbard, M. J.; Cohen, P., On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences 1993, 18 (5), 172-177.

39. Braich, N.; Codd, R., Immobilised metal affinity chromatography for the capture of hydroxamate-containing siderophores and other Fe(iii)-binding metabolites directly from bacterial culture supernatants. Analyst 2008, 133 (7), 877-880.

40. (a) Pink, M.; Verma, N.; Polato, F.; Bonn, G. K.; Baba, H. A.; Rettenmeier, A. W.; Schmitz-Spanke, S., Precipitation by lanthanum ions: A straightforward approach to isolating phosphoproteins. Journal of Proteomics 2011, 75 (2), 375-383; (b) Mirza, M.; Rainer, M.; Güzel, Y.; Choudhary, I.; Bonn, G., A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation. Anal Bioanal Chem 2012, 404 (3), 853-862; (c) Mirza, M. R.; Rainer, M.; Messner, C. B.; Guzel, Y.; Schemeth, D.; Stasyk, T.; Choudhary, M. I.; Huber, L. A.; Rode, B. M.; Bonn, G. K., A new type of metal chelate affinity chromatography using trivalent lanthanide ions for phosphopeptide enrichment. Analyst 2013, 138 (10), 2995-3004.

41. Shieh, F.-K.; Hsiao, C.-T.; Kao, H.-M.; Sue, Y.-C.; Lin, K.-W.; Wu, C.-C.; Chen, X.-H.; Wan, L.; Hsu, M.-H.; Hwu, J. R.; Tsung, C.-K.; Wu, K. C. W., Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Advances 2013, 3 (48), 25686-25689.

42. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938, 60 (2), 309-319.

43. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society 1940, 62 (7), 1723-1732.

44. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society 1998, 120 (24), 6024-6036.

45. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.

46. Huettner, J. E.; Stack, E.; Wilding, T. J., Antagonism of neuronal kainate receptors by lanthanum and gadolinium. Neuropharmacology 1998, 37 (10–11), 1239-1247.

47. 國立台灣大學生物技術研究中心 蛋白質分析-膠體電泳法 http://juang.bst.ntu.edu.tw/Protein/Analysis/A3.htm.

48. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1–2), 248-254.

49. Lowry, O.; Rosbrough, N.; Farr, A.; RJ, R., PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT. The Journal of Biological Chemistry 1951, 193 (1), 265-275.

50. Lucarini, A. C.; Kilikian, B. V., Comparative study of Lowry and Bradford methods: interfering substances. Biotechnology Techniques 1999, 13 (2), 149-154.

51. (a) Rej, R.; Richards, A. H., Interference by Tris buffer in the estimation of protein by the Lowry procedure. Analytical Biochemistry 1974, 62 (1), 240-247; (b) Turner, L. V.; Manchester, K. L., Interference of HEPES with the Lowry method. Science 1970, 170 (3958), 649.

52. Lesk, A., Introduction to Protein Science: Architecture, Function, and Genomics. OUP Oxford: 2010.

53. Cabbiness, D. K.; Margerum, D. W., Macrocyclic effect on the stability of copper (II) tetramine complexes. Journal of the American Chemical Society 1969, 91 (23), 6540-6541.

54. Hancock, R. D., Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands and macrocycles. Journal of Chemical Education 1992, 69 (8), 615.

55. Allen Chang, C.; Chen, Y.-H.; Chen, H.-Y.; Shieh, F.-K., Capillary electrophoresis, potentiometric and laser excited luminescence studies of lanthanide(III) complexes of 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane (DO2A) [dagger]. Journal of the Chemical Society, Dalton Transactions 1998, (19), 3243-3248.

56. Yaghi, O. M.; O′Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.

57. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149).

58. (a) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2011, 112 (2), 703-723; (b) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2011, 112 (2), 782-835.

59. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2011, 112 (2), 869-932.

60. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2011, 112 (2), 1196-1231.

61. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2011, 112 (2), 1055-1083.

62. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2011, 112 (2), 1105-1125.

63. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2011, 112 (2), 1232-1268.

64. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie International Edition 2013, 52 (10), 2688-2700.

65. Li, S.-L.; Xu, Q., Metal-organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.

66. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.

67. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.

68. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.

69. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.

70. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.

71. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.

72. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2011, 112 (2), 933-969.

73. Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal 2010, 16 (5), 1560-1571.

74. (a) Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 2011, 47 (37), 10275-10277; (b) Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science 2012, 5 (8), 8359-8369.

75. (a) Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 2007, 129 (17), 5314-5315; (b) Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.

76. (a) Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348; (b) Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.

77. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.

78. (a) Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819; (b) Vasconcelos, I. B.; Silva, T. G. d.; Militao, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012, 2 (25), 9437-9442.

79. Norberto Masciocchi, S. B., Elena Cariati, Franco Cariati, Simona Galli, and; Sironi, A., Extended Polymorphism in Copper(II) Imidazolate Polymers: A Spectroscopic and XRPD Structural Study. Inorganic Chemistry 2001, 40, 5897-5905.

80. Huang, X.; Zhang, J.; Chen, X., [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Chin. Sci. Bull. 2003, 48 (15), 1531-1534.

81. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.

82. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103 (27), 10186-10191.

83. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.

84. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.

85. Dey, C.; Banerjee, R., Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chemical Communications 2013, 49 (59), 6617-6619.

86. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.

87. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.

88. Sue, Y.-C.; Wu, J.-W.; Chung, S.-E.; Kang, C.-H.; Tung, K.-L.; Wu, K. C. W.; Shieh, F.-K., Synthesis of Hierarchical Micro/Mesoporous Structures via Solid–Aqueous Interface Growth: Zeolitic Imidazolate Framework-8 on Siliceous Mesocellular Foams for Enhanced Pervaporation of Water/Ethanol Mixtures. ACS Applied Materials & Interfaces 2014, 6 (7), 5192-5198.

89. Sun, C.-Y.; Qin, C.; Wang, X.-L.; Yang, G.-S.; Shao, K.-Z.; Lan, Y.-Q.; Su, Z.-M.; Huang, P.; Wang, C.-G.; Wang, E.-B., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions 2012, 41 (23), 6906-6909.

90. Přenosil, J. E.; Kut, Ö. M.; Dunn, I. J.; Heinzle, E., Biocatalysis, 2. Immobilized Biocatalysts. In Ullmann′s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA: 2000.

91. Messing, R. A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES. In Immobilized Enzymes for Industrial Reactors, Messing, R. A., Ed. Academic Press: 1975; pp 1-10.

92. (a) Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9; (b) Singh, B. D., Biotechnology: Expanding Horizons. Kalayani Publishers: 2010.

93. Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L.-J.; Ma, S., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorg. Chem. 2012, 51 (17), 9156-9158.

94. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.

95. Rosevear, A., Immobilised biocatalysts—a critical review. Journal of Chemical Technology and Biotechnology. Biotechnology 1984, 34 (3), 127-150.

96. Datta, S.; Christena, L. R.; Rajaram, Y., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.

97. (a) Hsieh, H.-J.; Liu, P.-C.; Liao, W.-J., Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol. Lett 2000, 22 (18), 1459-1464; (b) Ispas, C.; Sokolov, I.; Andreescu, S., Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem. 2009, 393 (2), 543-554.

98. Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem. 2011, 46 (8), 1565-1571.

99. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K., Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B: Enzym. 2009, 56 (4), 189-195.

100. Wen, H.; Nallathambi, V.; Chakraborty, D.; Calabrese Barton, S., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 2011, 175 (3-4), 283-289.

101. Kim, J.; Jia, H.; Wang, P., Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 2006, 24 (3), 296-308.

102. Reis, P.; Witula, T.; Holmberg, K., Mesoporous materials as host for an entrapped enzyme. Microporous and Mesoporous Materials 2008, 110 (2–3), 355-362.

103. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances 2014, 4 (95), 52883-52886.

104. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.

105. Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 2014, 16 (21), 4493-4500.

106. Jiang, Z.; Sun, H.; Qin, Z.; Jiao, X.; Chen, D., Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template. Chemical Communications 2012, 48 (30), 3620-3622.

指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明