博碩士論文 91246010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.143.17.50
姓名 王信福(Shinn-Fwu Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 D型光纖生化感測器
(D-type optical fiber biosensor)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一種新型之D型光纖生化感測方法及系統,其係採用可產生電漿共振效果之光纖感測器,將待檢物(例如:酒精、葡萄糖等等溶液)放置於該光纖感測器上,再將光源導入光纖感測器後,利用外差干涉術測量得到其干涉信號之相位差;或利用其衰減全反射的特性,可量得其輸出端的光強度信號。如此,我們便可測得待測物的折射率或是其他與待測物有關之參數。
此光纖感測器具有體積小、易於量測、可於遠端遙測、只需少許檢體、高解析度、高靈敏度以及可作體內量測等等的優點。此外,其靈敏度可藉由量測角度予以調整,因此此可調式靈敏度的特性,可廣泛用於不同介質的量測。值得一題的是,其靈敏度可達 的折射率單位,且實驗結果與電腦模擬結果呈現一致的現象。
由於此D型光纖生化感測器具有如此多的優點,因此我們可將其推廣應用於醫學檢測、生化檢測、化學藥品以及生醫光電等等領域。相信,其對未來生物醫學技術必有相當的幫助。
摘要(英) In the dissertation, a D-type optical fiber biosensor based on the surface plasmon resonance (SPR) technology is proposed. The optical fiber biosensor is a novel sensing device based on the surface plasmon resonance (SPR) technology or/and heterodyne interferometry. In the sensing mechanism, we only drop a little tested sample (e.g., alcohol, C6H12O6 solution etc.) on the sensing surface of the sensor. The refractive indices and the other parameters of the tested medium can be achieved by measuring the phase difference variations and the light intensity from the output of the sensor.
The senor has some merits, e.g., small size, smaller sample volume, easy measurement and suitable for in vivo test etc. Besides, the D-type optical fiber biosensor has the tunable high sensitivity only if we choose different incident angle. From experimental results, it is evident that they are in good correspondence with theoretical results. Its sensitivity can reach 0.000002 refractive index unit (RIU).
To sum up, it may be a useful sensor device for the researchers in the related fields, especially in biophotonics. Perhaps it will contribute to the human beings significantly in the future.
關鍵字(中) ★ 外差干涉術
★ 表面共漿共振
★ 光纖感測器
關鍵字(英) ★ surface plasma resonance
★ heterodyne interferometry
★ optical fiber sensor
論文目次 目錄 (Contents)
中文摘要………………………………………………Ⅰ
英文摘要………………………………………………Ⅱ
誌謝……………………………………………………Ⅲ
目錄……………………………………………………Ⅳ
圖目錄………………………………………………ⅩⅠ
表目錄……………………………………………ⅩⅠⅠ
Chapter 1: Introduction………………………………………1
1.1 Background of study………………………………………1
1.2 Purpose of study……………………………………………2
1.3 Scope of study ……………………… …………………3
Chapter 2: Total Internal Reflection in Heterodyne interferometry……………5
2.1 Introduction…………… ………………………………5
2.2 The common-path heterodyne interferometry…………5
2.3 The multiple total-internal eflections……………………9
2.4 An example of multiple total-internal reflections in
heterodyne interferometry…………………………………17
2.5 Conclusion…………………………………………………22
Chapter 3: Surface Plasmon Resonance……………………24
3.1 Introduction……………………………………………24
3.2 The principles of the SPR technology………………24
3.2.1 The Intensity Method…………………………………27
3.2.2 The Phase Method………………………………………28
3.3 The Application of the SPR technology………………29
3.3.1 Principle………………………………………………29
3.3.2 Experimental Apparatus and Results…………………33
3.3.3 Discussion and Conclusion…………………………36
Chapter 4: D-Type Optical Fiber Biosensor………………38
4.1 Introduction…………………………………………………38
4.2 The scheme of D-type optical fiber biosensor………39
4.3 The measurement methods……………………………46
4.3.1 The intensity method…………………………………46
4.3.2 The phase method……………………………………47
Chapter 5: Simulations and Experiments…………………51
5.1 Introduction……………………………………………51
5.2 Simulations……………………………………………51
5.2.1 The intensity method…………………………………51
5.2.2 The phase method……………………………………59
5.3 Experiments……………………………………………65
5.3.1 Experiment Ⅰ………………………………………65
5.3.2 Experiment Ⅱ………………………………………67
Chapter 6: Discussion and Conclusion……………………69
6.1 Discussion………………………………………………69
6.1.1 The intensity method…………………………………69
6.1.2 The phase method……………………………………70
6.2 Conclusion………………………………………………72
References……… …………………………………………73
Appendix A: Fresnel’s Equations…………………………83
Appendix B: The Resonant Angle for ATR Kretschmann’s
Configuration………………………………………………86
Appendix C:Propagation of an electromagnetic wave
through a homogeneous film……………………………90
Appendix D: Comparison with the other methods………98
Appendix E: Parameters and Symbols……………………100
著作 (Publication List)………………………………101
List of Figures
Figure 2.1: A ray of light in air is incident at θ on one side surface
of a right-angle prism with refractive index ………………6
Figure 2.2: The schematic diagram of the basic structure of the
common-path heterodyne interferometry……………………7
Figure 2.3: The basic structure of the new instrument for measuring
small angles…………………………………………………10
Figure 2.4: The two beams on the stage in twenty total-internal
Reflections…………………………………………………..13
Figure 2.5: The results that we simulate the conditions of the two
lights undergoing multiple total-internal reflections (m:
the times of the total-internal reflections)(in degree)………14
Figure 2.6: The light undergoes multiple times total-internal reflections
in the parallelogram prism…………………………………16
Figure 2.7: The experimental configuration that is used for measuring
small angles by multiple total-internal reflections in
heterodyne interferometry:………………………………17
Figure 2.8 The experimental and theoretical curves of versus θ....20
Figure 2.9: Relation curves of Δθ versus θ…………21
Figure 2.10: The curves of the sensitivity S versus for the
different times of total-internal reflections…………22
Figure 3.1: Kretchmann’s configuration for the generation of surface
plasmon resonance………………………………………………26
Figure 3.2: The intensity reflectivity of the TM polarized wave, i.e.,
p-polarization light, as a function of the incident angle
and the thickness of gold film…………………………27
Figure 3.3: The phase difference variation as a function of the gold
thickness and the incident angle ………………28
Figure 3.4: Kretchmann’s configuration for the generation of
surface plasmon resonance………………………………31
Figure 3.5: The phase difference as a function of the rotating angle……32
Figure 3.6: The experimental setup…………………………………33
Figure 3.7: The experimental and theoretical curves ………36
Figure 3.8: The curves of sensitivity S versus and resolution versus the variation angle…37
Figure 4.1: The sensing scheme of the sensor (from the lateral view)…40
Figure 4.2: The scheme of the sensor……………………………………………41
Figure 4.3: The photograph of the D-type optical fiber biosensor………41
Figure 4.4: A beam is coupled in and out of the D-type optical fiber sensor……43
Figure 4.5: The signal processing circuits of one input terminal for the
linear photo-detector A5V-38………………………………44
Figure 4.6: The PCB photograph of the signal processing circuits……45
Figure 4.7: The transmission power measured by the linear photo-detector……46
Figure 4.8: A heterodyne source is coupled in and out of the
D-type optical fiber biosensor……………………………50
Figure 5.1: The intensity reflectivity as a function of the incident
angle and the thickness of gold film……………52
Figure 5.2: A beam is coupled in and out of the D-type optical fiber
biosensor……………………………………………………53
Figure 5.3: The reflectivity as a function of the gold thickness
and the index of refraction …………………54
Figure 5.4: The reflectivity as a function of n …………………55
Figure 5.5: The reflectivity as a function of incident angle………56
Figure 5.6: The relation between the reflectivity and the thickness
of gold film …………………………………………56
Figure 5.7: The reflectivity as a function of n and d ………57
Figure 5.8: The reflectivity versus the index of refraction
of the sensed medium for different length …………58
Figure5.9 The normalized transmitted powers versus the refractive indices…59
Figure 5.10: The phase difference variation as a function of the
gold thickness and the index of refraction ……60
Figure 5.11: The reflectivity as a function of n and d ……………61
Figure 5.12: The phase difference variation as a function of the length L
and the index of refraction ................................62
Figure 5.13: The reflectivity as a function of the length L=4mm and
the index of refraction n for and ...63
Figure 5.14: The phase difference variation as a function of the
incident angle and the index of refraction …………………63
Figure 5.15: The reflectivity as a function of the incident angle
and the index of refraction ………………64
Figure 5.16: The experimental and theoretical results (Experiment Ⅰ)....66
Figure 5.17: The experimental and theoretical results (Experiment Ⅱ)....68
Figure 6.1: The sensitivity S versus n for the intensity method at a specific incident angle………………………………………70
Figure 6.2: The sensitivity S versus n for the phase method ………71
List of Tables
Table 5.1: The refractive indices for various alcohol concentrations
(0%~50%)…………………………………………………66
Table 5.2: The refractive indices for various sugar solution
concentrations………………………………………………68
參考文獻 References
1.D. Y. Song, F. S. Zhang, H. A. Macleod, M. R. Jacobson, “Study of surface contamination by surface plasmons,” SPIE Optical Thin FilmsⅡ: New Developments 678 (1986) 211-218.
2.J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54 (1999) 3-15.
3.Z. Salamon, H. A. Macleod, G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems.Ⅰ: Theoretical principles,” Biochim. Biophys. Acta 1331 (1997) 117-129.
4.Z. Salamon, H. A. Macleod, G. Tollin, “Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems.Ⅱ: Applications to biological systems,” Biochim. Biophys. Acta 1331 (1997) 131-152.
5.E. Kretshmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen,” Z.Phys. 241 (1971) 313-324.
6.F. Meriaudeau, A. Wig, A. Passian, T. Downey, M. Buncick, T. L. Ferrell, “Gold island fiber optic sensor for refractive index sensing,” Sens. Actuators B 69 (2000) 51-57.
7.W. B. Lin, J. M. Chovelon, N. Jaffrezic-Renault, “ Fibe-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Appl. Opt. 39 (2000) 3261-3265.
8.D. Monzón-Hernández, J. Villatoro, D Talavera. D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43 (2004) 1216-1220.
9.F. J. Bueno, O. Esteban, N. Díaz-Herrera, M. C. Navarrete, A. González-Cano, “ Sensing properties of asymmetric double-layer-covered tapered fibers,” Appl. Opt. 43 (2004) 1615-1620.
10.W. B. Lin, M. Lacroix, J. M. Chovelon, N, Jaffrezic-renault, “Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media,” Sens. Actuators B 75 (2001) 203-209.
11.R.C. Jorgenson, S.S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12 (1993) 213-220.
12.W. B. Lin, N. Jaffrezic-Renault, A. Gagnaire, H. Gagnaire, “ The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor,” Sens. Actuators B 84 (2000) 198-204.
13.G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Optical and Quantum Electronics 26 (1994) s249-s259.
14.A. Díez, M. V. Andrés, and J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73 (2001) 95-99.
15.A. Díez, M. V. Andrés, and J. L. Cruz, “Hybrid surface plasmon modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16 (1999) 2978-2982.
16.H. P. Kao, N. Yang, and J. S. Schoeniger, “Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coating,” J. Opt. Soc. Am. A 15 (1998) 2163-2171.
17.S. J. Al-Bader and M. Imtaar, “Optical fiber hybrid-surface plasmon polaritons,” J. Opt. Soc. Am. B 10 (1993) 83-88.
18.A.J.C. Tubb, F.P. Payne, R. B. Millington, and C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41 (1997) 71-79.
19.J. Homola, “Optical fiber sensor based on surface plasmon excitation,” Sens. Actuators B 29 (1995) 401-405.
20.M. Brenci, R. Falciai, and M. Scheggi, “Tapered enlarged ends in multimode optical fibers,” Appl. Opt.21 (1982) 317-319.
21.B. D. Gupta and C. D. Singh, “Evanescent-absorption coefficient for diffuse source illumination: uniform- and tapered-fiber sensors,” Appl. Opt.33 (1994) 2737-2742.
22.B. D. Gupta and D. K. Sharma, “Evanescent wave absorption based fiber optic pH sensor prepared by dye doped sol-gel immobilization technique,” Opt. Commun. 140 (1997) 32-35.
23.A. L. and A. D. Shaligram, “Multi-wavelength optical fiber liquid refractometry based on intensity modulation,” Sens. Actuators A 100 (2002) 160-164.
24.F. Meriaudeau, T. Downey, A. Wig, A. Passian, M. Buncick, and T. L. Ferrell, “Fiber optic sensor based on gold island plasmon resonance,” Sens. Actuators B 54 (1999) 106-117.
25.M. H. Chiu, S.N. Hsu, H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,“ Sens. Actuators B 101 (2004) 322-327.
26.E. Fontana, “Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk,” Appl. Opt.43 (2004) 79-87.
27.邱銘宏,「共光程外差干涉儀的原理與其應用之研究」,國立交通大學光電工程研究所,pp. 6-18,新竹(1996).
28.M. Born and E. Wolf, “Principles of optics”,6th ed., Pergamon Press, Oxford, U.K., pp48-50, (1980).
29.P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect and the use of right-angle prisms”, Appl. Opt.34 (1995) 4976-4981.
30.D. C. Su, M. H. Chiu, and C. D. Chen, ”Simple two frequency laser”, Precis. Eng. 18, 161-163, (1996).
31.J. Guo, Z. Zhu, and W. Deng, ”Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation”, Appl. Opt. 38 (1999) 6550-6555.
32.Y. C. Cheng, W. K. Su, J. H. Liou, “Application of a liquid sensor based on surface plasmon wave excitation to distinguish methyl alcohol from ethyl alcohol,” Opt. Eng. 39 (2000) 311-314.
33.K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209 (2002) 167-172.
34.J. Rohlin, “An interferometer for precision angle measurements,” Appl. Opt. 2 (1963) 762-763.
35.D. Malacara and O. Harris, “Interferometric measurement of angles,” Appl. Opt. 9 (1970) 1630-1633.
36.G. D. Chapman, “Interferometric angular measurement,” Appl. Opt. 13 (1974) 1646-1651.
37.P. Shi and E. Stijns, “New optical methods for measuring small-angle rotations,” Appl. Opt. 27 (1988) 4342-4344.
38.P. Shi and E. Stijns,”Improving the linearity of the Mechelson interferometric angular measurement by a parameter- compensation method,” Appl. Opt. 32 (1993) 44-51.
39.P. R. Yoder, Jr., E. R. Schlesinger, and J. L. Chickvary, “Active annular-beam laser autocollimator system” Appl. Opt. 14 (1975) 1890-1895.
40.A.E. Ennos and M. S. Virdee, “High accuracy profile measurement of quasi-conical mirror surface by laser autocollimation”, Precis. Eng. 5 (1982) 5-8.
41.G. G. Luther and R. D. Deslattes, “Single-axis photoelectronic autocollimator, “ Rev. Sci. Instrum. 55 (1984) 747-750.
42.P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms” Appl. Opt. 35 (1996) 2239-2241.
43.S. Shen, T. Liu, and J. Guo,“Optical phase-shift detection of surface plasmon resonance,” Appl. Opt. 37 (1998) 1747-1751.
44.M. H. Chiu and D. C. Su, “Improved technique for measuring small angles”, Appl. Opt., 36 (1997) 7104-7106.
45.W. M. Robertson and E. Fullerton, “Reexamination of the surface-plasma-wave technique for determining the dielectric constant and thickness of metal films”, J.Opt.Soc.Am.B 6 (1989) 1584-1589.
46.K. S. Chang, C. Chou, and C.H. Lin, “Focused-beam attenuated total-reflection technique on absorptive film in Kretshmann’s configuration”, Appl. Opt., 32 (1993) 2957-2962.
47.P. Pfeifer, U. Aldinger, G. Schwotzer, and S. Diekmann, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy”, Sens. Actuators B 54 (1999) 166-175.
48.B. Lieberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing”, Sens. Actuators 4 (1983) 299-304.
49.H. Melendez, R. Carr, D. U. Bartholomew, et al. , “A commercial solution for surface plasmon sensing”, Sens. Actuators B 35 (1996) 212-216.
50.Y. Xinglong, Z. Lequn, J. Hong, and W. Haojuan, “Immunosensor based on optical heterodyne phase detection”, Sens. Actuators B 76 (2001) 199-202.
51.L. Lévesque and B. E. Paton, “Detection of defects in multiple-layer structures by using surface plasmon resonance”, Appl. Opt., 36 (1997) 7199-7203.
52.R.C. Jorgenson, “A surface plasmon resonance side active retro-reflecting sensor,” Sens. Actuators B 73 (2001) 236-248.
53.A. K. Sharma, B.D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators,B 100 (2004) 423-431.
54.M. Mitsushio, S. Higashi, and M. Higo, “Construction and evaluation of a gold-deposited optical fiber sensor system for measurements of refractive indices of alcohols,” Sens. Actuators,A 111 (2004) 252-259.
55.L. A. Obando, D. J. Gentleman, John R. Holloway, and Karl S. Booksh, “Manufacture of robust surface plasmon resonance fiber optic based dip-probes,” Sens. Actuators,B 100 (2004) 439-449.
56.M. Iga, A. Seki, and K. Watanabe, “Hetero-core structured fiber optic surface plasmon resonance sensor with silver film,” Sens. Actuators,B 101 (2004) 268-372.
57.M. watanabe and K. Kajikawa, “An optical fiber biosensor based on anomalous reflection of gold,” Sens. Actuators,B 89 (2003) 126-130.
58.R. Slavík, J. Homola, and E. Brynda, “A miniature fiber optic surface resonance sensor for fast detection of staphylococcal enterotoxin B,”Biosensors and Bioelectronics 17 (2002) 591-595.
59.U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, and K. Cammann, “Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices,” Sens. Actuators,B 32 (1996) 149-155.
60.M. H. Chiu, S. N. Hsu, H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,“ Sens. Actuators B 101,322-327(2004)
61.Snyder, A. M., and Love, J. D., “Optical Waveguide Theory,”, Chapman &Hall, London (1983) pp63-68.
62.A. K. Sharma, B.D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators,B 100 (2004) 423-431 .
指導教授 張榮森(Rong-Seng Chang) 審核日期 2005-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明