參考文獻 |
Nerlich, A.G., et al., Ancient Egyptian prosthesis of the big toe. The Lancet,
2000. 356(9248): p. 2176-2179.
2. Heslop, B.F., I.M. Zeiss, and N. Nisbet, Studies on transference of bone: I. A
comparison of autologous and homologous bone implants with reference to
osteocyte survival, osteogenesis and host reaction. British journal of
experimental pathology, 1960. 41(3): p. 269.
3. Hench, L.L., Bioceramics: from concept to clinic. Journal of the American
Ceramic Society, 1991. 74(7): p. 1487-1510.
4. Arrington, E.D., et al., Complications of iliac crest bone graft harvesting.
Clinical orthopaedics and related research, 1996. 329: p. 300-309.
5. Service, R.F., Tissue engineers build new bone. Science (New York, NY), 2000.
289(5484): p. 1498.
6. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 24 卷(3 期): p. 431-435.
7. Meinel, L., et al., Bone tissue engineering using human mesenchymal stem
cells: effects of scaffold material and medium flow. Annals of biomedical
engineering, 2004. 32(1): p. 112-122.
8. Yoshimoto, H., et al., A biodegradable nanofiber scaffold by electrospinning
and its potential for bone tissue engineering. Biomaterials, 2003. 24(12): p.
2077-2082.
9. Shin, M., H. Yoshimoto, and J.P. Vacanti, In vivo bone tissue engineering using
mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue
engineering, 2004. 10(1-2): p. 33-41.
10. Luo, Y., et al., Enhanced proliferation and osteogenic differentiation of
mesenchymal stem cells on graphene oxide-incorporated electrospun poly
(lactic-co-glycolic acid) nanofibrous mats. ACS applied materials & interfaces,
2015. 7(11): p. 6331-6339.
11. Nguyen, L.T., et al., Electrospun poly (L-lactic acid) nanofibres loaded with
dexamethasone to induce osteogenic differentiation of human mesenchymal
stem cells. Journal of Biomaterials Science, Polymer Edition, 2012. 23(14): p.
1771-1791.
12. Martins, A., et al., Osteogenic induction of hBMSCs by electrospun scaffolds
with dexamethasone release functionality. Biomaterials, 2010. 31(22): p.
5875-5885.
13. Ding, S., et al., Synergistic effect of released dexamethasone and surface
82
nanoroughness on mesenchymal stem cell differentiation. Biomaterials
Science, 2013. 1(10): p. 1091-1100.
14. Li, L., et al., Controlled dual delivery of BMP-2 and dexamethasone by
nanoparticle-embedded electrospun nanofibers for the efficient repair of
critical-sized rat calvarial defect. Biomaterials, 2015. 37: p. 218-229.
15. Meaney, D.F., Mechanical properties of implantable biomaterials. Clinics in
podiatric medicine and surgery, 1995. 12(3): p. 363-384.
16. Gogolewski, S., Bioresorbable polymers in trauma and bone surgery. Injury,
2000. 31: p. D28-D32.
17. Burdick, J.A., et al., An initial investigation of photocurable three-dimensional
lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials, 2003.
24(9): p. 1613-1620.
18. Sen, R., et al., Preparation of single-walled carbon nanotube reinforced
polystyrene and polyurethane nanofibers and membranes by electrospinning.
Nano letters, 2004. 4(3): p. 459-464.
19. Langer, R. and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p.
920-926.
20. Lannutti, J., et al., Electrospinning for tissue engineering scaffolds. Materials
Science and Engineering: C, 2007. 27(3): p. 504-509.
21. Singh, M., C. Berkland, and M.S. Detamore, Strategies and applications for
incorporating physical and chemical signal gradients in tissue engineering.
Tissue Engineering Part B: Reviews, 2008. 14(4): p. 341-366.
22. Lee, J.Y., et al., Polypyrrole-coated electrospun PLGA nanofibers for neural
tissue applications. Biomaterials, 2009. 30(26): p. 4325-4335.
23. Agrawal, C. and R.B. Ray, Biodegradable polymeric scaffolds for
musculoskeletal tissue engineering. Journal of biomedical materials research,
2001. 55(2): p. 141-150.
24. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design
variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
25. Cen, L., et al., Collagen tissue engineering: development of novel biomaterials
and applications. Pediatric research, 2008. 63(5): p. 492-496.
26. Croisier, F. and C. Jérôme, Chitosan-based biomaterials for tissue engineering.
European Polymer Journal, 2013. 49(4): p. 780-792.
27. Chu, C.R., et al., Articular cartilage repair using allogeneic
perichondrocyteseeded biodegradable porous polylactic acid (PLA): A tissueengineering
study. Journal of biomedical materials research, 1995. 29(9): p.
1147-1154.
28. Williams, J.M., et al., Bone tissue engineering using polycaprolactone
83
scaffolds fabricated via selective laser sintering. Biomaterials, 2005. 26(23): p.
4817-4827.
29. Boland, E.D., et al., Tailoring tissue engineering scaffolds using electrostatic
processing techniques: a study of poly (glycolic acid) electrospinning. Journal
of Macromolecular Science, Part A, 2001. 38(12): p. 1231-1243.
30. Bhattarai, S.R., et al., Novel biodegradable electrospun membrane: scaffold
for tissue engineering. Biomaterials, 2004. 25(13): p. 2595-2602.
31. He, W., et al., Fabrication of collagen-coated biodegradable polymer
nanofiber mesh and its potential for endothelial cells growth. Biomaterials,
2005. 26(36): p. 7606-7615.
32. Park, H., et al., Delivery of TGF-β1 and chondrocytes via injectable,
biodegradable hydrogels for cartilage tissue engineering applications.
Biomaterials, 2005. 26(34): p. 7095-7103.
33. Gilbert, W., De magnete. 1958: Courier Corporation.
34. Anton, F., Process and apparatus for preparing artificial threads. 1934, Google
Patents.
35. Anton, F., Method and apparatus for spinning. 1944, Google Patents.
36. Reneker, D.H. and I. Chun, Nanometre diameter fibres of polymer, produced
by electrospinning. Nanotechnology, 1996. 7(3): p. 216.
37. Li, D. and Y. Xia, Electrospinning of nanofibers: reinventing the wheel?
Advanced materials, 2004. 16(14): p. 1151-1170.
38. Taylor, G. and A. McEwan, The stability of a horizontal fluid interface in a
vertical electric field. Journal of Fluid Mechanics, 1965. 22(01): p. 1-15.
39. Gatford, J. How the distribution of charge in the fibre changes as the fibre
dries during flight
Available from:
https://en.wikipedia.org/wiki/Electrospinning#/media/File:Electrospun_fibre
_drying.jpg.
40. Gatford, J. Diagram showing fibre formation by electrospinning. 2008;
Available from:
https://commons.wikimedia.org/wiki/File:Electrospinning_Diagram.jpg#/med
ia/File:Electrospinning_Diagram.jpg.
41. Chen, M.-C., Y.-C. Sun, and Y.-H. Chen, Electrically conductive nanofibers with
highly oriented structures and their potential application in skeletal muscle
tissue engineering. Acta biomaterialia, 2013. 9(3): p. 5562-5572.
42. Ku, S.H., S.H. Lee, and C.B. Park, Synergic effects of nanofiber alignment and
electroactivity on myoblast differentiation. Biomaterials, 2012. 33(26): p.
6098-6104.
84
43. B, A., et al., olecular biology of the cell. 1994: p. 971-975.
44. Li, W.J., et al., Electrospun nanofibrous structure: a novel scaffold for tissue
engineering. Journal of biomedical materials research, 2002. 60(4): p. 613-
621.
45. Kai, D., et al., Polypyrrole‐contained electrospun conductive nanofibrous
membranes for cardiac tissue engineering. Journal of Biomedical Materials
Research Part A, 2011. 99(3): p. 376-385.
46. Drumright, R.E., P.R. Gruber, and D.E. Henton, Polylactic acid technology.
Advanced materials, 2000. 12(23): p. 1841-1846.
47. Xiao, L., et al., Poly (lactic acid)-based biomaterials: synthesis, modification
and applications. 2012: INTECH Open Access Publisher.
48. Ji, W., et al., Bioactive electrospun scaffolds delivering growth factors and
genes for tissue engineering applications. Pharmaceutical research, 2011.
28(6): p. 1259-1272.
49. 胡哲誠, 電紡絲製備褐藻酸鈉/聚己內脂之奈米複合纖維進行原為轉染.
國立中央大學, 2013. 碩士論文.
50. Kim, H.S. and H.S. Yoo, MMPs-responsive release of DNA from electrospun
nanofibrous matrix for local gene therapy: in vitro and in vivo evaluation.
Journal of Controlled Release, 2010. 145(3): p. 264-271.
51. Sun, Z., et al., Compound core-shell polymer nanofibers by co-electrospinning.
Advanced materials, 2003. 15(22): p. 1929-1932.
52. Liu, J.J., et al., Peripheral nerve regeneration using composite poly (lactic acidcaprolactone)/
nerve growth factor conduits prepared by coaxial
electrospinning. Journal of biomedical materials research Part A, 2011. 96(1):
p. 13-20.
53. Li, Y.-F., et al., Ultraporous interweaving electrospun microfibers from PCL–
PEO binary blends and their inflammatory responses. Nanoscale, 2014. 6(6):
p. 3392-3402.
54. Liao, I., S. Chew, and K. Leong, Aligned core-shell nanofibers delivering
bioactive proteins. Nanomedicine, 2006: p. 465-471
55. Madani, S.Y., A. Mandel, and A.M. Seifalian, A concise review of carbon
nanotube′s toxicology. Nano reviews, 2013. 4.
56. Coleman, J.N., U. Khan, and Y.K. Gun′ko, Mechanical reinforcement of
polymers using carbon nanotubes. Advanced Materials, 2006. 18(6): p. 689-
706.
57. Spitalsky, Z., et al., Carbon nanotube–polymer composites: chemistry,
processing, mechanical and electrical properties. Progress in polymer science,
85
2010. 35(3): p. 357-401.
58. Cheng, H.K.F., et al., Current advances in the carbon nanotube/thermotropic
main-chain liquid crystalline polymer nanocomposites and their blends.
Polymers, 2012. 4(2): p. 889-912.
59. Huang, Y.Y. and E.M. Terentjev, Dispersion of carbon nanotubes: mixing,
sonication, stabilization, and composite properties. Polymers, 2012. 4(1): p.
275-295.
60. Xiao, Y., T. Gong, and S. Zhou, The functionalization of multi-walled carbon
nanotubes by in situ deposition of hydroxyapatite. Biomaterials, 2010. 31(19):
p. 5182-5190.
61. Im, J.S., S.-J. Park, and Y.-S. Lee, The metal–carbon–fluorine system for
improving hydrogen storage by using metal and fluorine with different levels
of electronegativity. International Journal of Hydrogen Energy, 2009. 34(3): p.
1423-1428.
62. Sae-Khow, O. and S. Mitra, Fabrication and characterization of carbon
nanotubes immobilized in porous polymeric membranes. J. Mater. Chem.,
2009. 19(22): p. 3713-3718.
63. Liao, G.-Y., et al., Electrospun aligned PLLA/PCL/functionalised multiwalled
carbon nanotube composite fibrous membranes and their bio/mechanical
properties. Composites Science and Technology, 2012. 72(2): p. 248-255.
64. Namgung, S., et al., Fibronectin–Carbon‐Nanotube Hybrid Nanostructures for
Controlled Cell Growth. Small, 2011. 7(1): p. 56-61.
65. Xu, B., et al., Carbon nanotube array inducing osteogenic differentiation of
human mesenchymal stem cells. Materials Science and Engineering: C, 2015.
51: p. 182-188.
66. Reya, T., et al., Stem cells, cancer, and cancer stem cells. nature, 2001.
414(6859): p. 105-111.
67. Chapman, A.R., et al. Stem cell research and applications: monitoring the
frontiers of biomedical research. 1999. American Association for the
Advancement of Science.
68. Leeper, N.J., A.L. Hunter, and J.P. Cooke, Stem cell therapy for vascular
regeneration adult, embryonic, and induced pluripotent stem cells.
Circulation, 2010. 122(5): p. 517-526.
69. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Experimental
Biology and Medicine, 2001. 226(6): p. 507-520.
70. Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for
molecular medicine in the 21st century. Trends in molecular medicine, 2001.
7(6): p. 259-264.
86
71. Jaiswal, N., et al., Osteogenic differentiation of purified, culture‐expanded
human mesenchymal stem cells in vitro. Journal of cellular biochemistry,
1997. 64(2): p. 295-312.
72. Weaver, C.L., et al., Electrically controlled drug delivery from graphene oxide
nanocomposite films. ACS nano, 2014. 8(2): p. 1834-1843.
73. Shao, S., et al., Osteoblast function on electrically conductive electrospun
PLA/MWCNTs nanofibers. Biomaterials, 2011. 32(11): p. 2821-2833.
74. You, Y., et al., In vitro degradation behavior of electrospun polyglycolide,
polylactide, and poly (lactide‐co‐glycolide). Journal of Applied Polymer
Science, 2005. 95(2): p. 193-200.
75. McCullen, S.D., et al., Development, optimization, and characterization of
electrospun poly (lactic acid) nanofibers containing multi‐walled carbon
nanotubes. Journal of applied polymer science, 2007. 105(3): p. 1668-1678.
76. Zong, X., et al., Structure and process relationship of electrospun
bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412.
77. Yang, F., et al., Electrospinning of nano/micro scale poly (L-lactic acid) aligned
fibers and their potential in neural tissue engineering. Biomaterials, 2005.
26(15): p. 2603-2610.
78. Meng, Z., et al., Fabrication and characterization of three-dimensional
nanofiber membrance of PCL–MWCNTs by electrospinning. Materials Science
and Engineering: C, 2010. 30(7): p. 1014-1021.
79. Li, H., et al., Super‐“Amphiphobic” Aligned Carbon Nanotube Films.
Angewandte Chemie International Edition, 2001. 40(9): p. 1743-1746.
80. ISU MatE453/MSE 553 - Lab 3 - FTIR. Available from:
https://sites.google.com/site/isumate453lab3group8/.
81. Shameli, K., et al., Synthesis and characterization of polyethylene glycol
mediated silver nanoparticles by the green method. International journal of
molecular sciences, 2012. 13(6): p. 6639-6650.
82. López, G.P., D.G. Castner, and B.D. Ratner, XPS O 1s binding energies for
polymers containing hydroxyl, ether, ketone and ester groups. Surface and
interface analysis, 1991. 17(5): p. 267-272.
83. Jacobsen, S. and H.-G. Fritz, Plasticizing polylactide—the effect of different
plasticizers on the mechanical properties. Polymer Engineering & Science,
1999. 39(7): p. 1303-1310.
84. Wu, D., et al., Crystallization and Biodegradation of Polylactide/Carbon
Nanotube Composites. Polymer Engineering and Science, 2010. 50(9): p.
1721-1733.
85. Nakafuku, C. and M. Sakoda, Melting and crystallization of poly (L-lactic acid)
87
and poly (ethylene oxide) binary mixture. Polymer journal, 1993. 25(9): p.
909-917.
86. Pluta, M., Morphology and properties of polylactide modified by thermal
treatment, filling with layered silicates and plasticization. Polymer, 2004.
45(24): p. 8239-8251.
87. Ogata, N., et al., Structure and thermal/mechanical properties of poly (llactide)‐
clay blend. Journal of Polymer Science Part B: Polymer Physics, 1997.
35(2): p. 389-396.
88. Baker, B.M., et al., The potential to improve cell infiltration in composite fiberaligned
electrospun scaffolds by the selective removal of sacrificial fibers.
Biomaterials, 2008. 29(15): p. 2348-2358.
89. Nam, J., et al., Improved cellular infiltration in electrospun fiber via
engineered porosity. Tissue engineering, 2007. 13(9): p. 2249-2257.
90. Rodrigues, L.B., et al., In vitro release and characterization of chitosan films as
dexamethasone carrier. International Journal of Pharmaceutics, 2009. 368(1):
p. 1-6.
91. Wadhwa, R., C.F. Lagenaur, and X.T. Cui, Electrochemically controlled release
of dexamethasone from conducting polymer polypyrrole coated electrode.
Journal of Controlled Release, 2006. 110(3): p. 531-541.
92. Temenoff, J.S. and A.G. Mikos, Biomaterials: The intersection of biology and
materials science. Introduction to surface characterization. 2008.
93. Shao, S., et al., Controlled green tea polyphenols release from electrospun
PCL/MWCNTs composite nanofibers. International journal of pharmaceutics,
2011. 421(2): p. 310-320. |