參考文獻 |
[1] Davies, J.I.; Struthers, A.D. Pulse Wave Analysis and Pulse Wave
Velocity: A Critical Review of Their Strengths and Weaknesses. J.
Hypertens. 2003, 21, 463–472.
[2] Kokkinos, P. Cardiorespiratory Fitness, Exercise, and Blood Pressure.
J. Hypertens. 2014, 64, 1160–1164.
[3] Berliner, H.S.; Salmon, J.W. The Holistic Alternative to Scientific
Medicine: History and Analysis. Int. J. Health Serv. 1980, 10, 133–
147.
[4] Normile, D. Asian Medicine: The New Face of Traditional Chinese
Medicine. Science 2003, 299, 188–190.
[5] Wang, Z.G.; Ren, J. Current Status and Future Direction of Chinese
Herbal Medicine. Trends Pharmacol. Sci. 2002, 23, 347–348.
[6] Gong, X.; Sucher, N.J. Stroke Therapy in Traditional Chinese
Medicine (TCM): Prospects for Drug Discovery and Development.
Trends Pharmacol. Sci. 1999, 20, 191–196.
[7] Wang, L.F. Diagnostics of Traditional Chinese Medicine, 1st ed.;
Shanghai University of traditional Chinese medicine: Shanghai, China,
2002; pp. 122–130.
[8] Wang, L.F. Diagnostics of Traditional Chinese Medicine, 1st ed.;
Shanghai University of traditional Chinese medicine: Shanghai, China,
2002; pp. 239–243.
[9] Chang, R.S.; Chiu, J.H.; Chen, F.P.; Chen, J.C.; Yang, J.L. A
Parkinson’s Disease Measurement System Using Laser Lines and a
CMOS Image Sensor. Sensors 2011, 11, 1461–1475.
[10] Wu, J.H.; Chang, R.S.; Jiang, J.A. A Novel Pulse Measurement System
by Using Laser Triangulation and a CMOS Image Sensor. Sensors
2007, 7, 3366–3385.
[11] Malinauskas, K.; Palevicius, P.; Ragulskis, M.; Ostasevicius, V.;
Dauksevicius, R. Validation of Noninvasive MOEMS-Assisted
Measurement System Based on CCD Sensor for Radial Pulse Analysis.
Sensors 2013, 13, 5368–5380.
[12] Luo, C.H.; Chung, Y.F.; Hu, C.S.; Yeh, C.C.; Si, X.C.; Feng, D.H.; Lee,
Y.C.; Huang, S.I.; Yeh, S.M.; Liang, C.H. Possibility of Quantifying
TCM Finger-Reading Sensations: I. Bi-Sensing Pulse Diagnosis
Instrument. Eur. J. Integr. Med. 2012, 4, e255–e262.
[13] Chung, Y.F.; Hu, C.S.; Luo, C.H.; Yeh, C.C.; Si, X.C.; Feng, D.H.; Yeh,
S.M.; Liang, C.H. Possibility of Quantifying TCM Finger-Reading Sensations: II. An Example of Health Standardization. Eur. J. Integr.
Med. 2012, 6, e263–e270.
[14] Huang, P.Y.; Lin, W.C.; Chiu, B.Y.C.; Chang, H.H.; Lin, K.P.
Regression Analysis of Radial Artery Pulse Palpation as a Potential
Tool for Traditional Chinese Medicine Training Education.
Complement. Ther. Med. 2013, 21, 649–659.
[15] Wang, H.; Zhang, P. A Model for Automatic Identification of Human
Pulse Signals. J. Zhejiang Univ. Sci. 2008, 9, 1382–1389.
[16] Chu, Y.W.; Luo, C.H.; Chung, Y.F.; Hu, C.S.; Yeh, C.C. Using an
Array Sensor to Determine Differences in Pulse Diagnosis—Three
Positions and Nine Indicators. Eur. J. Integr. Med. 2014, 6, 516–523.
[17] Yoon, Y.Z.; Lee, M.H. Soh, K.S. Pulse Type Classification by Varying
Contact Pressure. IEEE Eng. Med. Biol. Mag. 2000, 19, 106–110.
[18] King, E.; Cobbin, D.; Walsh, S.; Ryan, D. The Reliable Measurement
of Radial Pulse Characteristics. Acupunct. Med. 2002, 20, 150–159.
[19] Wei, G.; Lu, Y.Q.; Oyang, J.Z. Chaos and Fractal Theories for Speech
Signal Processing. Acta Electron. Sin. 1996, 24, 34–39.
[20] Dorsch, R.G.; Häusler, G.; Herrmann, J.M. Laser triangulation:
fundamental uncertainty in distance measurement. Applied Optics
1994, 33, 1306–1314.
[21] Amann, M.C.; Bosch, T.; Lescure, M.; Myllyla¨, R.; Rioux, M. Laser
ranging: a critical review of usual techniques for distance
measurement. Optical Engineering. 2001, 40, 10–19.
[22] Manneberg, G.; Hertegård, S.; Liljencrantz, J. Measurement of
humanvocal fold vibrations with laser triangulation. Optical
Engineering. 2001, 40, 2041–2044.
[23] Wu, J.H.; Chang, R.S.; Jiang, J.A. A Novel Pulse Measurement System
by Using Laser Triangulation and a CMOS Image Sensor. Sensors
2007, 7, 3366–3385.
[24] Chang, R.S.; Chiu, J.H.; Chen, F.P.; Chen, J.C.; Yang, J.L. A
Parkinson’s Disease Measurement System Using Laser Lines and a
CMOS Image Sensor. Sensors 2010, 11, 1461–1475.
[25] Perrin, J. C.; Thomas, A. Electronic processing of moiré fringes:
application to moiré topography and comparison with photogrammetry.
Applied Optics 1979, 18, 563–574.
[26] Scrinivasan, V.; Liu,H.C.; Halioua, M. Automated Phase – Measuring
Profilometry of 3-D Diffuse Objects. Applied Optics 1984, 15, 3105–
3108.
[27] Post, D.; Han, B.; Ifju, P.G. Moiré Methods for Engineering and
Science - Moiré Interferometry and Shadow Moiré. Topics in Applied
Physics 2000, 77, 151–196.
[28] Han, B.; Post, D.; Moiré interferometry for engineering mechanics:
current practices and future developments. The Journal of Strain
Analysis for Engineering Design 2001, 36, 101–117.
[29] Voloshin, A. S.; Burger,C. P.; Rowlands, R.E.Composites Analysis, by
Fractional Moiré Fringe System. J .Comp. Mat. 1985, 19, 513–524.
[30] Liao, J.E.A.; Voloshin, A.S. Enhancement of the Shadow-Moiré
Method through Digital Image Processing. Experimental Mechanics
1993, 33, 59–63.
[31] Du, H.; Zhao, H.; Li, B.; Zhao, J.; Cao, S. Phase-shifting shadow moiré
based on iterative self-tuning algorithm. Applied Optics 2011, 50,
6708–6712.
[32] E. King, D. Cobbin, S. Walsh, and D. Ryan, “The Reliable
Measurement of Radial Pulse Characteristics,” Acupunct Med 2002,
20, 150–159.
[33] G. Wei, Y. Q. Lu, and J. Z. Oyang, “Chaos and Fractal Theories for
Speech Signal Processing,” Acta Electronica Sinica 1996, 24, 34–39.
[34] Davies, J.I.; Struthers, A.D. Pulse wave analysis and pulse wave
velocity: a critical review of their strengths and weaknesses. Journal
of Hypertension 2003, 21, 463–472.
[35] Normile, D. Asian medicine: the new face of traditional Chinese
medicine. Science 2003, 299, 188–190.
[36] Wang, Z. G.; Ren, J. Current status and future direction of Chinese
herbal medicine. Trends Pharmacol. 2002, 23, 347–348.
[37] Gong, X.; Sucher, N.J. Stroke therapy in traditional Chinese medicine
(TCM): prospects for drug discovery and development. Phytomedicine
2002, 9, 478–484.
[38] Post, D.; Han, B.; Ifju, P. High Sensitivity Moiré: Experimental
Analysis for Mechanics and Materials, 1st ed.; Publisher: Springer,
USA, 2008; pp. 119–121.
[39] Wang, L.F. Diagnostics of traditional Chinese medicine, 1st ed.;
Publisher: Shanghai University of traditional Chinese medicine, China,
2002; pp. 122–130.
[40] Chiu, C.C.; Chang, H.H.; Yang, C.H. Objective auscultation for
traditional Chinese medical diagnosis using novel acoustic parameters.
Comput. Methods Programs Biomed. 2000, 62, 99–107.
[41] Yoon, Y.Z.; Lee, M.H.; Soh, K.S. Pulse type classification by varying
contact pressure. IEEE Eng. Med. Biol. Mag. 2000, 19, 106–110.
[42] Bao, H.; Gao, J.; Huang, T.; Zhou, Z.M.; Zhang, B.; Xia, Y.F.
Relationship between traditional Chinese medicine syndrome
differentiation and imaging characterization to the radiosensitivity of
nasopharyngeal carcinoma. Chin. J. Cancer 2010, 29, 937–945.
[43] Wang, X.; Qu, H.; Liu, P.; Cheng, Y. A self-learning expert system for
diagnosis in traditional Chinese medicine. Expert Syst. Appl. 2004, 26,
557–566.
[44] Wang, H.; Cheng, Y. A quantitative system for pulse diagnosis in
Traditional Chinese Medicine. In Proceedings of 27th Annual
International Conference of the Engineering in Medicine and Biology
Society, 2005 (IEEE-EMBS 2005), Shanghai, China, 17–18 January
2006; pp. 5676–5679.
[45] Yoon, Y.Z.; Joh, J.H.; Johng, H.M.; Shin, H.S.; Soh, K.S. Contrivance
of a radial pulse measuring system with variable contact pressure. J.
Biomed. Eng. Res. 1999, 20, 567–572.
[46] King, E.; Cobbin, D.; Walsh, S.; Ryan, D. The Reliable Measurement
of Radial Pulse Characteristics. Acupunct. Med. 2002, 20, 150–159.
[47] Wang, H.; Yan, J.; Wang, Y.; Li, F.; Guo, R. Digital Technology for
Objective Auscultation in Traditional Chinese Medical Diagnosis. In
Proceedings of International Conference on Audio, Language and
Image Processing, 2008 (ICALIP 2008), Shanghai, China, 7–9 July
2008; pp.1100–1104.
[48] Wei, G.; Lu, Y.Q.; Oyang, J.Z. Chaos and Fractal Theories for Speech
Signal Processing. Acta Electron. Sin. 1996, 24, 34–39.
[49] Mo, X.M.; Zhang, Y.S. Study on Acoustic Diagnosis in Traditional
Chinese Medicine: Actuality and Prospect. Chin. J. Basic Med. Tradit.
Chin. Med. 1996, 4, 54–56.
[50] Lue, J.H.; Ding, T.J.; Su, Y.S.; Chang, R.S.; Ko, T.C.; Huang, S.Y.;
Cheng, W.M. Low Cost Prototype of Pulse Measurement Devices. Life
Sci. J. 2014, 11, 317–319.
[51] Lue, J.H.; Chang, R.S.; Ko, T.C.; Su, Y.S.; Cherng, S.; Cheng, W.M.
Simple Two-Channel Sound Detectors Applying to Pulse
Measurement. Life Sci. J. 2014, 11, 421–423.
[52] Starecki, T. Ultra-low-noise preamplifier for condenser microphones.
Rev. Sci. Instrum. 2010, 81, 124702-1–124702-4.
[53] Chen, J.Y; Hsu, Y.C.; Lee, S.S.; Mukherjee, T.; Fedder, G.K. Modeling and simulation of a condenser microphone. Sens. Actuators A Phys.
2008, 145, 224–230.
[54] Yoon, S.H.; Ikezono, E. An objective method of pulse diagnosis. Am.
J. Chin. Med. 1987, 15, 147–153.
[55] Wang, L.F. Diagnostics of Traditional Chinese medicine, 1st ed.;
Shanghai University of Traditional Chinese Medicine: Shanghai,
China, 2002; pp. 122–130.
[56] Hofmeister, E. H.; King, J.; Read M. R. and Budsberg, S. C. Sample
size and statistical power in the small-animal analgesia literature.
Journal of Small Animal Practice 2007, 48, 76–79.
[57] Tjølsen, A. and Hole, K. Animal models of analgesia. The
Pharmacology of Pain 1997, 130, 1–20.
[58] Vendruscolo, L. F. and Takahashi, R. N. Synergistic interaction
between mazindol, an anorectic drug, and swim-stress on analgesic
responses in the formalin test in mice. Neurosci. Lett 2004, 355, 13–
16.
[59] Louisa, S. Considerations for prospective studies in animal analgesia.
Veterinary Anaesthesia and Analgesia 2010, 37, 303–305.
[60] Hiroki, I.; Yasutomo, L. and Emiko, S. Stress-induced hyperalgesia:
Animal models and putative mechanisms. Frontiers in Bioscience
2006, 11, 2179–2192.
[61] Mogil, J. S. Animal models of pain: progress and challenges. Nature
Reviews Neuroscience 2009, 10, 283–294.
[62] Abbott, F. V.; Franklin K. B. J.; Ludwick, R. J. and Melzack, R.
Apparent lack of tolerance in the formalin test suggests different
mechanisms for morphine analgesia in different types of pain.
Pharmacology Biochemistry and Behavior 1981, 15, 637–640.
[63] Fanselow, M. S. “Shock-induced analgesia on the formalin test:
Effects of shock severity, naloxone, hypophysectomy, and associative
variables,” Behavioral Neuroscience 1984, 98, 79–95.
[64] Desjardins, A. E.; Hendriks, B. H.; Voort, W. M.; Nachabé R.; Bierhoff,
W.; Braun, G.; Babic, D.; Rathmell, J. P.; Holmin, S. M. Söderman,
and Holmström, B. Epidural needle with embedded optical fibers for
spectroscopic differentiation of tissue: Ex vivo feasibility study.
Biomedical Optics Express 2011, 2, 1452–1461.
[65] Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C. and Joris1 J. A new
and sensitive method for measuring thermal nociception in cutaneous
hyperalgesia. Pain 1988, 32, 77–88.
[66] Kooa, S. T.; Parka, Y. I.; Lima, K. S.; Chung, K. Chung, and Chung, J.
M. Chung. Acupuncture analgesia in a new rat model of ankle sprain
pain. Pain 2002, 99, 423–431.
[67] Rosland, J. H. The formalin test in mice: The influence of ambient
temperature. Pain 1991, 45, 211–216.
[68] Candelletti, S. and Ferri, S. Antinociceptive profile of
intracerebrovascular salmon calcitonin and calcitonin-gene related
peptide in the mouse formalin test,” Neuropeptides 1990, 17, 93–98.
[69] Shima, K.; Nakahama, H.; Yamanoto, M.; Aya, K. and Inase, M.
Effects of morphine on two types of nucleus raphe dorsalis neurons in
awake cats. Pain 1987, 29, 375–386.
[70] Alreja, M.; Mutalik, P.; Nayar, U. and Manchanda, S. K. The formalin
test: A tonic pain model in the primate. Pain 1984, 20, 97-105.
[71] Carli, G.; Farabollini, F. and Fontani, G. Effects of pain, morphine and
naloxone on the duration of animal hypnosis. Behay, Brain Res. 1981,
2, 373–385.
[72] Takahashi, H.; Shibata, K.; Ohkubo, T. and Naruse, S. Formalin
induced minor tremor response as an indicator of pain. Nippon
Yakurigaku Zasshi 1984, 84, 353–362.
[73] Kanui, T. I.; Hole, K. and Miaron, J. O. Nociception in crocodiles:
Capsaicin instillation in formalin and hot plate tests. Zool. Sci. 1990,
7, 537–540.
[74] Hughes, R. A. and Sulka, J. Morphine hyperalgesic effects on the
formalin test in domestic fowl. Pharmacol. Biochem, Behav. 1991, 38,
247–251.
[75] Pelissier, T.; Saavedra, H.; Bustamante, D. and Panicle, C. Further
studies on the understanding of Octodon degus natural resistance to
morphine; A comparative study with the Wistar rat. Comp. Biochem.
Physiol. 1989, 192, 319–322.
[76] Oyadeyi, A. S.; Ajao, F. O.; Afolabi, A. O.; Udoh, U. S. and Azeez, O.
M. The formalin test in African toad (Bufo regularis) - A novel pain
model in amphibians. American-Eurasian Journal of Scientific
Research 2007, 2, 24–28.
[77] Chang, R. S.; Chiu, J. H.; Chen, F. P.; Chen, J. C. and Yang, J. L. A
Parkinson’s disease measurement system using laser lines and a
CMOS image sensor. Sensors 2011, 11, 1462–1475.
[78] Wu, J. H.; Chang, R. S. and Jiang, J. A. A novel pulse measurement
system by using laser triangulation and a CMOS image sensor. Sensors 2007, 7, 3366–3385. |