博碩士論文 102286007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.22.70.102
姓名 陳盈運(Ying-yun Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非接觸式光學量測應用於生物醫學
(Non-Contact Optical Measurement Used in the Biomedical Field)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究★ 生產線上之影像量測系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要是建立三種不同架構的非接觸式光學量測系統,並應
用於生物醫學量測,第一種為利用光學疊紋(Moiré)技術,自動化判
斷疊纹條纹的位置並記錄條紋變化的週期量,計算出待測物表面任一
位置的地形高度與其高度變化,此系統可以分析中醫脈象(the
conditions of pulse),中醫脈象包括脈的位置(藉由影像處理疊紋圖案)、
脈的節律(藉由頻率)、脈的形狀(藉由疊紋圖案)和脈的強度(藉由震幅
強度)。
第二種為利用電容式麥克風量測手腕脈搏之脈音,將麥克風擷取
的信號做濾波處理,並傳送到電腦做快速傅立葉轉換(FFT)程式,轉
換為心跳頻率,本裝置遵從中醫的把脈方式,針對的寸、關、尺三處
分別以不同的把脈壓力,浮取(50mmHg)、中取(80mmHg)和沉取
(110mmHg)進行量測分析,以上兩種量測方式是針對中醫脈搏並分析
數據,使中醫得以量化。
第三種為利用雷射光學三角量測(laser optical triangulation)原理,
針對我們所選用的動物,透過注射數不同濃度福馬林試劑得到各種不
同刺激(空針注射、12% 福馬林注射、37%福馬林注射) 的頻率,實驗
結果為正相關的曲線,使痛覺可以被量化。
摘要(英) This paper is to establish three different non-contact optical measurement
systems used in the biomedical field. The first system uses optical moiré to
automatically determine the location of moiré pattern, record the cycle of
pattern change and calculate the height and height change at any spot of a
test surface. This system can analyze the conditions of pulse which include
the location (image processing of moiré pattern), rhythm (via frequency),
shape (via moiré pattern) and strength of pulse (via amplitude).
The second system uses a condenser microphone to measure the pulse of
wrist. Signals captured by the microphone is filtered and transmitted to a
computer for a fast Fourier transform (FFT) to be converted into heart rate.
This device follows the practice of pulse reading in Chinese medicine and
applies three different pressures of 50mmHg, 80mmHg and 110mmHg at
wrist, guan and cubit. The two measurement methods above analyze and
quantify the pulse reading in Traditional Chinese Medicine.
The third system uses the concept of laser optical triangulation which
injects different concentrations of formalin reagent into animal to obtain
different frequencies of stimuli (empty injection, 12% formalin, 37%
formalin). The results show positive correlation, so that pain can be
quantified.
關鍵字(中) ★ 非接觸式
★ 疊紋
★ 脈象
★ 脈音
★ 痛覺
關鍵字(英) ★ Non-contact
★ moiré
★ pulse
★ pulse tone
★ pain
論文目次 iv
Content
摘要 ...................................................................................................................... i
Abstract .................................................................................................................ii
致謝 ..................................................................................................................... iii
Content ................................................................................................................. iv
List of Figures ........................................................................................................ vi
List of Tables ........................................................................................................ vii
......................................................... Chapter 1 Overview of Biomedical Measurement
............................................................................................................................. 1
1.1 Introduction of Biomedical Measurement ......................................................... 1
1.2 Research Motivation and Contributions ........................................................... 3
1.2.1 Moiré Technique and Auscultation for Pulse Measurement ......................................... 3
1.2.2 A Study on Optical Triangulation for Biological Pain Measurement ........................... 6
1.3 Dissertation Outline .......................................................................................... 7
...... Chapter 2 An Application of Automatized 3D Moiré Monitoring System in Pulse
Measurement ........................................................................................................ 8
2.1 Abstract ............................................................................................................ 8
2.2 Introduction ...................................................................................................... 9
2.3 Method ........................................................................................................... 12
2.3.1 Measurement Principle of Shadow Moiré .................................................................. 12
2.3.2 Drawing Terrain Feature Figure and Measuring Height Variations ............................ 14
2.3.3 The Automatized Calculation Program ....................................................................... 16
2.4 Moiré Monitor System .................................................................................... 18
2.4.1 System Structure ......................................................................................................... 18
2.4.2 Program Calculation Process ...................................................................................... 22
2.4.3 The Accuracy of Detection ......................................................................................... 24
2.5 Pulse Measurement Results ............................................................................ 27
2.5.1 Detecting the Height Variations Around the Right-Hand Guan Pulse ........................ 28
2.5.2 Pulse Waveform of Pulse Movements Monitor .......................................................... 29
2.5.3 Summary ..................................................................................................................... 31
...................................................Chapter 3 A Study of New Pulse Auscultation System
............................................................................................................................ 32
3.1 Abstract .......................................................................................................... 32
3.2 Introduction .................................................................................................... 33
3.3 New Pulse Auscultation System....................................................................... 35
3.4 Measuring Steps ............................................................................................. 44
3.5 Calibration and Errors Analysis ..................................................................... 45
3.6 Experimental Results ...................................................................................... 46
3.7 Summary ........................................................................................................ 54
............ Chapter 4 The Optical Measurement and Quantitative Analysis of Algesia in
Spodoptera litura Larva ....................................................................................... 56
4.1 Abstract .......................................................................................................... 56
4.2 Introduction .................................................................................................... 57
4.3 Methods and Materials ................................................................................... 58
4.3.1 Methods ...................................................................................................................... 58
4.3.2 Materials and Sample Preparation .............................................................................. 62
4.3.3 Experimental Methods and Procedures ...................................................................... 62
4.3.4 System Calibration and Error Analysis ....................................................................... 65
4.4 Experimental Results ...................................................................................... 67
4.5 Summary ........................................................................................................ 69
........................................................................ Chapter 5 Conclusion and Future Work
............................................................................................................................ 72
References ........................................................................................................... 75
參考文獻 [1] Davies, J.I.; Struthers, A.D. Pulse Wave Analysis and Pulse Wave
Velocity: A Critical Review of Their Strengths and Weaknesses. J.
Hypertens. 2003, 21, 463–472.
[2] Kokkinos, P. Cardiorespiratory Fitness, Exercise, and Blood Pressure.
J. Hypertens. 2014, 64, 1160–1164.
[3] Berliner, H.S.; Salmon, J.W. The Holistic Alternative to Scientific
Medicine: History and Analysis. Int. J. Health Serv. 1980, 10, 133–
147.
[4] Normile, D. Asian Medicine: The New Face of Traditional Chinese
Medicine. Science 2003, 299, 188–190.
[5] Wang, Z.G.; Ren, J. Current Status and Future Direction of Chinese
Herbal Medicine. Trends Pharmacol. Sci. 2002, 23, 347–348.
[6] Gong, X.; Sucher, N.J. Stroke Therapy in Traditional Chinese
Medicine (TCM): Prospects for Drug Discovery and Development.
Trends Pharmacol. Sci. 1999, 20, 191–196.
[7] Wang, L.F. Diagnostics of Traditional Chinese Medicine, 1st ed.;
Shanghai University of traditional Chinese medicine: Shanghai, China,
2002; pp. 122–130.
[8] Wang, L.F. Diagnostics of Traditional Chinese Medicine, 1st ed.;
Shanghai University of traditional Chinese medicine: Shanghai, China,
2002; pp. 239–243.
[9] Chang, R.S.; Chiu, J.H.; Chen, F.P.; Chen, J.C.; Yang, J.L. A
Parkinson’s Disease Measurement System Using Laser Lines and a
CMOS Image Sensor. Sensors 2011, 11, 1461–1475.
[10] Wu, J.H.; Chang, R.S.; Jiang, J.A. A Novel Pulse Measurement System
by Using Laser Triangulation and a CMOS Image Sensor. Sensors
2007, 7, 3366–3385.
[11] Malinauskas, K.; Palevicius, P.; Ragulskis, M.; Ostasevicius, V.;
Dauksevicius, R. Validation of Noninvasive MOEMS-Assisted
Measurement System Based on CCD Sensor for Radial Pulse Analysis.
Sensors 2013, 13, 5368–5380.
[12] Luo, C.H.; Chung, Y.F.; Hu, C.S.; Yeh, C.C.; Si, X.C.; Feng, D.H.; Lee,
Y.C.; Huang, S.I.; Yeh, S.M.; Liang, C.H. Possibility of Quantifying
TCM Finger-Reading Sensations: I. Bi-Sensing Pulse Diagnosis
Instrument. Eur. J. Integr. Med. 2012, 4, e255–e262.
[13] Chung, Y.F.; Hu, C.S.; Luo, C.H.; Yeh, C.C.; Si, X.C.; Feng, D.H.; Yeh,
S.M.; Liang, C.H. Possibility of Quantifying TCM Finger-Reading Sensations: II. An Example of Health Standardization. Eur. J. Integr.
Med. 2012, 6, e263–e270.
[14] Huang, P.Y.; Lin, W.C.; Chiu, B.Y.C.; Chang, H.H.; Lin, K.P.
Regression Analysis of Radial Artery Pulse Palpation as a Potential
Tool for Traditional Chinese Medicine Training Education.
Complement. Ther. Med. 2013, 21, 649–659.
[15] Wang, H.; Zhang, P. A Model for Automatic Identification of Human
Pulse Signals. J. Zhejiang Univ. Sci. 2008, 9, 1382–1389.
[16] Chu, Y.W.; Luo, C.H.; Chung, Y.F.; Hu, C.S.; Yeh, C.C. Using an
Array Sensor to Determine Differences in Pulse Diagnosis—Three
Positions and Nine Indicators. Eur. J. Integr. Med. 2014, 6, 516–523.
[17] Yoon, Y.Z.; Lee, M.H. Soh, K.S. Pulse Type Classification by Varying
Contact Pressure. IEEE Eng. Med. Biol. Mag. 2000, 19, 106–110.
[18] King, E.; Cobbin, D.; Walsh, S.; Ryan, D. The Reliable Measurement
of Radial Pulse Characteristics. Acupunct. Med. 2002, 20, 150–159.
[19] Wei, G.; Lu, Y.Q.; Oyang, J.Z. Chaos and Fractal Theories for Speech
Signal Processing. Acta Electron. Sin. 1996, 24, 34–39.
[20] Dorsch, R.G.; Häusler, G.; Herrmann, J.M. Laser triangulation:
fundamental uncertainty in distance measurement. Applied Optics
1994, 33, 1306–1314.
[21] Amann, M.C.; Bosch, T.; Lescure, M.; Myllyla¨, R.; Rioux, M. Laser
ranging: a critical review of usual techniques for distance
measurement. Optical Engineering. 2001, 40, 10–19.
[22] Manneberg, G.; Hertegård, S.; Liljencrantz, J. Measurement of
humanvocal fold vibrations with laser triangulation. Optical
Engineering. 2001, 40, 2041–2044.
[23] Wu, J.H.; Chang, R.S.; Jiang, J.A. A Novel Pulse Measurement System
by Using Laser Triangulation and a CMOS Image Sensor. Sensors
2007, 7, 3366–3385.
[24] Chang, R.S.; Chiu, J.H.; Chen, F.P.; Chen, J.C.; Yang, J.L. A
Parkinson’s Disease Measurement System Using Laser Lines and a
CMOS Image Sensor. Sensors 2010, 11, 1461–1475.
[25] Perrin, J. C.; Thomas, A. Electronic processing of moiré fringes:
application to moiré topography and comparison with photogrammetry.
Applied Optics 1979, 18, 563–574.
[26] Scrinivasan, V.; Liu,H.C.; Halioua, M. Automated Phase – Measuring
Profilometry of 3-D Diffuse Objects. Applied Optics 1984, 15, 3105–
3108.
[27] Post, D.; Han, B.; Ifju, P.G. Moiré Methods for Engineering and
Science - Moiré Interferometry and Shadow Moiré. Topics in Applied
Physics 2000, 77, 151–196.
[28] Han, B.; Post, D.; Moiré interferometry for engineering mechanics:
current practices and future developments. The Journal of Strain
Analysis for Engineering Design 2001, 36, 101–117.
[29] Voloshin, A. S.; Burger,C. P.; Rowlands, R.E.Composites Analysis, by
Fractional Moiré Fringe System. J .Comp. Mat. 1985, 19, 513–524.
[30] Liao, J.E.A.; Voloshin, A.S. Enhancement of the Shadow-Moiré
Method through Digital Image Processing. Experimental Mechanics
1993, 33, 59–63.
[31] Du, H.; Zhao, H.; Li, B.; Zhao, J.; Cao, S. Phase-shifting shadow moiré
based on iterative self-tuning algorithm. Applied Optics 2011, 50,
6708–6712.
[32] E. King, D. Cobbin, S. Walsh, and D. Ryan, “The Reliable
Measurement of Radial Pulse Characteristics,” Acupunct Med 2002,
20, 150–159.
[33] G. Wei, Y. Q. Lu, and J. Z. Oyang, “Chaos and Fractal Theories for
Speech Signal Processing,” Acta Electronica Sinica 1996, 24, 34–39.
[34] Davies, J.I.; Struthers, A.D. Pulse wave analysis and pulse wave
velocity: a critical review of their strengths and weaknesses. Journal
of Hypertension 2003, 21, 463–472.
[35] Normile, D. Asian medicine: the new face of traditional Chinese
medicine. Science 2003, 299, 188–190.
[36] Wang, Z. G.; Ren, J. Current status and future direction of Chinese
herbal medicine. Trends Pharmacol. 2002, 23, 347–348.
[37] Gong, X.; Sucher, N.J. Stroke therapy in traditional Chinese medicine
(TCM): prospects for drug discovery and development. Phytomedicine
2002, 9, 478–484.
[38] Post, D.; Han, B.; Ifju, P. High Sensitivity Moiré: Experimental
Analysis for Mechanics and Materials, 1st ed.; Publisher: Springer,
USA, 2008; pp. 119–121.
[39] Wang, L.F. Diagnostics of traditional Chinese medicine, 1st ed.;
Publisher: Shanghai University of traditional Chinese medicine, China,
2002; pp. 122–130.
[40] Chiu, C.C.; Chang, H.H.; Yang, C.H. Objective auscultation for
traditional Chinese medical diagnosis using novel acoustic parameters.
Comput. Methods Programs Biomed. 2000, 62, 99–107.
[41] Yoon, Y.Z.; Lee, M.H.; Soh, K.S. Pulse type classification by varying
contact pressure. IEEE Eng. Med. Biol. Mag. 2000, 19, 106–110.
[42] Bao, H.; Gao, J.; Huang, T.; Zhou, Z.M.; Zhang, B.; Xia, Y.F.
Relationship between traditional Chinese medicine syndrome
differentiation and imaging characterization to the radiosensitivity of
nasopharyngeal carcinoma. Chin. J. Cancer 2010, 29, 937–945.
[43] Wang, X.; Qu, H.; Liu, P.; Cheng, Y. A self-learning expert system for
diagnosis in traditional Chinese medicine. Expert Syst. Appl. 2004, 26,
557–566.
[44] Wang, H.; Cheng, Y. A quantitative system for pulse diagnosis in
Traditional Chinese Medicine. In Proceedings of 27th Annual
International Conference of the Engineering in Medicine and Biology
Society, 2005 (IEEE-EMBS 2005), Shanghai, China, 17–18 January
2006; pp. 5676–5679.
[45] Yoon, Y.Z.; Joh, J.H.; Johng, H.M.; Shin, H.S.; Soh, K.S. Contrivance
of a radial pulse measuring system with variable contact pressure. J.
Biomed. Eng. Res. 1999, 20, 567–572.
[46] King, E.; Cobbin, D.; Walsh, S.; Ryan, D. The Reliable Measurement
of Radial Pulse Characteristics. Acupunct. Med. 2002, 20, 150–159.
[47] Wang, H.; Yan, J.; Wang, Y.; Li, F.; Guo, R. Digital Technology for
Objective Auscultation in Traditional Chinese Medical Diagnosis. In
Proceedings of International Conference on Audio, Language and
Image Processing, 2008 (ICALIP 2008), Shanghai, China, 7–9 July
2008; pp.1100–1104.
[48] Wei, G.; Lu, Y.Q.; Oyang, J.Z. Chaos and Fractal Theories for Speech
Signal Processing. Acta Electron. Sin. 1996, 24, 34–39.
[49] Mo, X.M.; Zhang, Y.S. Study on Acoustic Diagnosis in Traditional
Chinese Medicine: Actuality and Prospect. Chin. J. Basic Med. Tradit.
Chin. Med. 1996, 4, 54–56.
[50] Lue, J.H.; Ding, T.J.; Su, Y.S.; Chang, R.S.; Ko, T.C.; Huang, S.Y.;
Cheng, W.M. Low Cost Prototype of Pulse Measurement Devices. Life
Sci. J. 2014, 11, 317–319.
[51] Lue, J.H.; Chang, R.S.; Ko, T.C.; Su, Y.S.; Cherng, S.; Cheng, W.M.
Simple Two-Channel Sound Detectors Applying to Pulse
Measurement. Life Sci. J. 2014, 11, 421–423.
[52] Starecki, T. Ultra-low-noise preamplifier for condenser microphones.
Rev. Sci. Instrum. 2010, 81, 124702-1–124702-4.
[53] Chen, J.Y; Hsu, Y.C.; Lee, S.S.; Mukherjee, T.; Fedder, G.K. Modeling and simulation of a condenser microphone. Sens. Actuators A Phys.
2008, 145, 224–230.
[54] Yoon, S.H.; Ikezono, E. An objective method of pulse diagnosis. Am.
J. Chin. Med. 1987, 15, 147–153.
[55] Wang, L.F. Diagnostics of Traditional Chinese medicine, 1st ed.;
Shanghai University of Traditional Chinese Medicine: Shanghai,
China, 2002; pp. 122–130.
[56] Hofmeister, E. H.; King, J.; Read M. R. and Budsberg, S. C. Sample
size and statistical power in the small-animal analgesia literature.
Journal of Small Animal Practice 2007, 48, 76–79.
[57] Tjølsen, A. and Hole, K. Animal models of analgesia. The
Pharmacology of Pain 1997, 130, 1–20.
[58] Vendruscolo, L. F. and Takahashi, R. N. Synergistic interaction
between mazindol, an anorectic drug, and swim-stress on analgesic
responses in the formalin test in mice. Neurosci. Lett 2004, 355, 13–
16.
[59] Louisa, S. Considerations for prospective studies in animal analgesia.
Veterinary Anaesthesia and Analgesia 2010, 37, 303–305.
[60] Hiroki, I.; Yasutomo, L. and Emiko, S. Stress-induced hyperalgesia:
Animal models and putative mechanisms. Frontiers in Bioscience
2006, 11, 2179–2192.
[61] Mogil, J. S. Animal models of pain: progress and challenges. Nature
Reviews Neuroscience 2009, 10, 283–294.
[62] Abbott, F. V.; Franklin K. B. J.; Ludwick, R. J. and Melzack, R.
Apparent lack of tolerance in the formalin test suggests different
mechanisms for morphine analgesia in different types of pain.
Pharmacology Biochemistry and Behavior 1981, 15, 637–640.
[63] Fanselow, M. S. “Shock-induced analgesia on the formalin test:
Effects of shock severity, naloxone, hypophysectomy, and associative
variables,” Behavioral Neuroscience 1984, 98, 79–95.
[64] Desjardins, A. E.; Hendriks, B. H.; Voort, W. M.; Nachabé R.; Bierhoff,
W.; Braun, G.; Babic, D.; Rathmell, J. P.; Holmin, S. M. Söderman,
and Holmström, B. Epidural needle with embedded optical fibers for
spectroscopic differentiation of tissue: Ex vivo feasibility study.
Biomedical Optics Express 2011, 2, 1452–1461.
[65] Hargreaves, K.; Dubner, R.; Brown, F.; Flores, C. and Joris1 J. A new
and sensitive method for measuring thermal nociception in cutaneous
hyperalgesia. Pain 1988, 32, 77–88.
[66] Kooa, S. T.; Parka, Y. I.; Lima, K. S.; Chung, K. Chung, and Chung, J.
M. Chung. Acupuncture analgesia in a new rat model of ankle sprain
pain. Pain 2002, 99, 423–431.
[67] Rosland, J. H. The formalin test in mice: The influence of ambient
temperature. Pain 1991, 45, 211–216.
[68] Candelletti, S. and Ferri, S. Antinociceptive profile of
intracerebrovascular salmon calcitonin and calcitonin-gene related
peptide in the mouse formalin test,” Neuropeptides 1990, 17, 93–98.
[69] Shima, K.; Nakahama, H.; Yamanoto, M.; Aya, K. and Inase, M.
Effects of morphine on two types of nucleus raphe dorsalis neurons in
awake cats. Pain 1987, 29, 375–386.
[70] Alreja, M.; Mutalik, P.; Nayar, U. and Manchanda, S. K. The formalin
test: A tonic pain model in the primate. Pain 1984, 20, 97-105.
[71] Carli, G.; Farabollini, F. and Fontani, G. Effects of pain, morphine and
naloxone on the duration of animal hypnosis. Behay, Brain Res. 1981,
2, 373–385.
[72] Takahashi, H.; Shibata, K.; Ohkubo, T. and Naruse, S. Formalin
induced minor tremor response as an indicator of pain. Nippon
Yakurigaku Zasshi 1984, 84, 353–362.
[73] Kanui, T. I.; Hole, K. and Miaron, J. O. Nociception in crocodiles:
Capsaicin instillation in formalin and hot plate tests. Zool. Sci. 1990,
7, 537–540.
[74] Hughes, R. A. and Sulka, J. Morphine hyperalgesic effects on the
formalin test in domestic fowl. Pharmacol. Biochem, Behav. 1991, 38,
247–251.
[75] Pelissier, T.; Saavedra, H.; Bustamante, D. and Panicle, C. Further
studies on the understanding of Octodon degus natural resistance to
morphine; A comparative study with the Wistar rat. Comp. Biochem.
Physiol. 1989, 192, 319–322.
[76] Oyadeyi, A. S.; Ajao, F. O.; Afolabi, A. O.; Udoh, U. S. and Azeez, O.
M. The formalin test in African toad (Bufo regularis) - A novel pain
model in amphibians. American-Eurasian Journal of Scientific
Research 2007, 2, 24–28.
[77] Chang, R. S.; Chiu, J. H.; Chen, F. P.; Chen, J. C. and Yang, J. L. A
Parkinson’s disease measurement system using laser lines and a
CMOS image sensor. Sensors 2011, 11, 1462–1475.
[78] Wu, J. H.; Chang, R. S. and Jiang, J. A. A novel pulse measurement
system by using laser triangulation and a CMOS image sensor. Sensors 2007, 7, 3366–3385.
指導教授 張榮森(Rong-seng Chang) 審核日期 2015-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明