博碩士論文 102329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.147.60.193
姓名 陳漢文(Han-Wen Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究
(The study of thermoelectric and mechanical properties for the nano-/micro-grain Zn4Sb3 fabricated by melt spinning and vacuum hot pressing)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究
★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究
★ 鐵基塊狀金屬玻璃熱塑成形性之研究★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究
★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究
★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) β-Zn4Sb3為熱電性能表現最佳的中溫熱電材料,為提升其熱電優值,本研究中混和具有奈米晶與微米晶結構的Zn4Sb3粉末,藉由增加塊材內部晶界面來降低塊材導熱度,進而提高熱電轉換效率。首先將急冷旋鑄法製備具有奈米晶的Zn4Sb3薄帶研磨成粉末後,再與熔融法製備的微米晶粉末互相混合,其Zn4Sb3粉末混合比例以奈米晶/微米晶:95/5 vol.%、90/10 vol.%、85/15 vol.%與80/20 vol.%為基準預製混和粉末,再利用真空熱壓法燒結成相對密度約為99.5%以上之Zn4Sb3塊材,使其具有高的破裂韌性可達1.46 MPa.m1/2。藉由奈米晶的晶粒細化來增加Zn4Sb3材料Seebeck係數與降低熱傳導率,同時利用添加微米晶的來增加載子的移動進而提升電導率,由於奈米/微米複合結構不但降低了材料的晶格熱導率並同時提升了電導率,進而提高整體之ZT值。研究結果顯示80 vol.%奈米晶/20 vol.%微米晶複合結構熱壓塊材在325℃表現出最高ZT值為1.22。
摘要(英) The β-Zn4Sb3 thermoelectric(TE) material β-Zn4Sb3 has the best performance during 350~400℃. Its advantages include low cost and simple fabricate process. Some researches indicated that its ZT value can reach 1.37 at 400℃
In this study, we select two methods to fabricate nano- and micro- grained Zn4Sb3 process. One is melt spinning process (30 m/s) for Zn4Sb3 ribbon and the other one is a traditional manufacture method by using melt diffusion and quenching for bulk sample. The melt spun ribbons and melt diffused bulk material were both grinded into powders, then mix these two powders with nano/micro-grain sized powder ratio of 95/5 vol.%、90/10 vol.%、85/15 vol.% and 80/20 vol.%. Then these mixed powders were fabricated into bulk samples via vacuum hot pressing (HP) method. The fracture toughness can reach as high as 1.46 MPa.m1/2 because of its high relative density above 99.5%. We propose that with nano- and micro- grained composite structure can increase the phonon scattering and decrease the lattice thermal conductivity at the same time and so as to enhance ZT value. The results show that the optima thermoelectric property occurs at the bulk sample with nano/micro-grain grained vol.ume ratio of 80/20, the measurement of the Seebeck coefficient, electric conductivity, and thermal conductivity are 213 μV/K, 337 S/cm and 7.53 mW/cmK2 ,respectively, which presented a ZT value as high as 1.22 at 598 K.
關鍵字(中) ★ Zn4Sb3
★ 真空熱壓法
★ ZT值
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XI
第一章、緒論 1
1-1 前言 1
1-2 研究目的 2
第二章、文獻回顧 5
2-1 熱電效應 5
2-1-1 Seebeck 效應 6
2-1-2 Peltier係應 7
2-1-3 Thomson效應 7
2-2 電導率 8
2-3 熱傳導率 9
2-4 Wiedemann-Franz定律 10
2-5 Zn4Sb3簡介 11
2-5-1 Zn4Sb3之原子組成比 12
2-5-2 Zn4Sb3之晶體結構 12
2-6 熔融法製備Zn4Sb3 13
2-7奈米晶Zn4Sb3製備 14
2-7-1 機械合金法 14
2-7-2急冷旋鑄法(Melt spinning) 14
2-8 Zn4Sb3塊材成型方法 15
2-8-1 熱壓法(Hot pressing) 15
2-8-2 火花電漿法燒結(Spark plasma sintering) 16
第三章、實驗方法與設備 21
3-1 起始原料 21
3-2 粉體及燒結體製備 22
3-2-1急冷旋鑄法製備具奈米晶的Zn4Sb3薄帶 22
3-2-2熔融法製備Zn4Sb3塊材 22
3-2-3粉體研磨及混合 23
3-2-4真空熱壓成形 23
3-3 材料性質分析 24
3-3-1 X光繞射分析(XRD) 24
3-3-2 示差掃描分析(DSC) 24
3-3-3 掃描式電子顯微鏡分析(SEM) 25
3-3-4 穿透式電子顯微鏡分析(TEM) 25
3-3-5 粉體粒徑量測 25
3-4 材料性質量測 26
3-4-1 Zn4Sb3熱電材料分析樣品準備 26
3-4-2 Seebeck係數量測 26
3-4-3 電導率量測 27
3-4-4 熱傳導率量測 27
3-4-4-1 比熱量測 28
3-4-4-2 密度量測 29
3-4-4-3 熱擴散係數量測 29
3-4-5 機械性質量測 30
3-4-5-1 硬度量測分析 30
3-4-5-2 奈米壓痕量測 30
3-4-5-3 破裂韌性 30
第四章、結果與討論 41
4-1 熔融法製備之Zn4Sb3之基本性質 41
4-1-1熔融法製備之Zn4Sb3之XRD分析 41
4-1-2熔融法製備之Zn4Sb3之DSC熱分析 41
4-1-3熔融法製備之Zn4Sb3之粒徑分佈分析 42
4-2 急冷旋鑄法製備之Zn4Sb3之基本性質 42
4-2-1急冷旋鑄法製備之Zn4Sb3之XRD分析 42
4-2-2 急冷旋鑄法製備之Zn4Sb3之DSC熱分析 43
4-2-3 急冷旋鑄法製備之Zn4Sb3之粒徑分佈分析 43
4-2-4 急冷旋鑄法製備之Zn4Sb3之TEM分析 44
4-3熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之性質量測 45
4-3-1熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之XRD分析 45
4-3-2熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之DSC熱分析 45
4-3-3 熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之密度量測 45
4-3-4熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之顯微結構觀察 46
4-3-5 熔融法與急冷旋鑄法製備之Zn4Sb3混合熱壓塊材之熱電性質量測 47
4-3-5-1 熱壓塊材之Seebeck係數 47
4-3-5-2 熱壓塊材之電導率 47
4-3-5-3 熱壓塊材之功率因子 48
4-3-5-4熱壓塊材之比熱量測 49
4-3-5-5 熱壓塊材之熱擴散係數量測 49
4-3-5-6 熱壓塊材之熱傳導率 50
4-3-5-7 熱壓塊材之ZT值 51
4-3-6 熱壓塊材之機械性質 52
第五章、結論 65
參考文獻 66
參考文獻 〔1〕T. Caillat, J.-P. Fleurial, A. Borshchevsky, “Preparation and thermoelectric properties of semiconducting Zn4Sb3”, Journal of Physics and Chemistry of Solids, vol. 58, pp.1119-1125, 1997.
〔2〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Solid-state syntheses and properties of Zn4Sb3 thermoelectric materials”, Journal of Alloys and Compounds, vol. 361, pp.84-91, 2003.
〔3〕L.T. Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, “Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3”, Journal of Alloys and Compounds, vol. 358, pp.252-256, 2003.
〔4〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Thermoelectric properties of Zn4Sb3 directly synthesized by hot pressing”, Materials Letters, vol. 58, pp.2132-2136, 2004.
〔5〕J.H. Ahn, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, Y.J. Shim, “Thermoelectric properties of Zn4Sb3 prepared by hot pressing”, Materials Research Bulletin, vol. 46, pp.1490-1495, 2011.
〔6〕顏潤賢,利用急冷旋鑄及真空熱壓製備β-Zn4Sb3奈米微米晶塊材之熱電性質探討,中央大學機械工程學系碩士論文,2014。
〔7〕Dekui Qi, Xinfeng Tang, Han Li, Yonggao Yan, And Qingjie Zhang,” Improved Thermoelectric Performance and Mechanical Properties of Nanostructured Melt-Spun β-Zn4Sb3”, Journal of Electronic Materials, vol.39, 2010.
〔8〕Pee-Yew Lee, Tzu-Chien Chen, Jing-Yi Huang, Huey-Lin Hsieh, Jason Shian-Ching Jang, “ Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing”, Journal of Alloys and Compounds, vol. 615, pp. S476-S481, 2014.
〔9〕Z.F. Zheng, C.X Liu, Y.Y. Yan, Q. Wang, “ A review of thermoelectrics research-Recent developments and potentials for sustainable and renewable energy applications”, Renewable and Sustainable Energy Reviews, vol. 32, pp.486-503, 2014.
〔10〕Mohamed Hamid Elsheikh, Dhafer Abdulameer Shnawah, Mohd Faizul Mohd Sabri, Suhana Binti Mohd Said, Masjuki Haji Hassan, Mohamed Bashir Ali Bashir, Mahazani Mohamed, “ A review on thermoelectric renewable energy: Principle parameters that affect their performance”, Renewable and Sustainable Energy Reviews, vol. 30, pp.337-355, 2014.
〔11〕M. Tapiero, S. Tarabichi, J.G. Gies, C. Noguet, J.P. Zielinger, M. Joucla, J.L. Loison and M. Robino, ” Preparation and characterization of Zn4Sb3”, Solar Energy Materials, vol.12, pp.257-274, 1985.
〔12〕Fouzia Adjadj, El-djemai Belbacha, Malek Bouharkat, “Differential calorimetric analysis of the binary system Sb–Zn”, Journal of Alloys and Compounds, vol.430, pp.85-91, 2007.
〔13〕Yurij Mozharivskyj, Alexandra O. Pecharsky, Sergey Bud’ko, and Gordon J. Miller, ” A Promising Thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-δSb”, Chemistry of Material, vol. 16, pp.1580-1589, 2004.
〔14〕Go Nakamoto, Keisuke Kinoshita, Makio Kurisu, “Thermal expansion anomalies at high temperatures near stoichiometric Zn4Sb3 composition”, Journal of Alloys and Compounds, vol.436, pp.65-68, 2007.
〔15]H. Okamoto, “ Sb-Zn (Antimony-Zinc)”, JPEDAV, vol..29, 2008.
〔16〕Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel, Eric S. Toberer, G. Jeffrey Snyder and Johan Taftø, ” Nanostructuring in β-Zn4Sb3 with variable starting Zn compositions” , Physica Status Solidi A, vol. 208, pp.1652-1657, 2011.
〔17〕Protima Rauwel, Ole Martin Løvvik, Erwan Rauwel and Johan Taftø, “Nanovoids in thermoelectric β-Zn4Sb3 A possibility for nanoengineering via Zn diffusion”, Acta Materialia, vol.59, pp.5266–5275, 2011.
〔18] Gaohua Zhu, Weishu Liu, Yucheng Lan, Giri Joshi, Hui Wang, Gang Chen, Zhicheng Ren, “The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound”, nano energy, vol.2, pp.1172-1178, 2013.
〔19〕G. Jeffrey Snyder, Mogens Christensen, Eiji Nishibori, Thierry Caillat, and Bo Brummerstedt Iversen, “Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties”, Nature Materials, vol.3, pp.459-463, 2004.
〔20〕Fausto Cargnoni, Eiji Nishibori, Philippe Rabiller, Luca Bertini, Jeffrey Snyder, Mogens Christensen, Carlo Gatti, and Bo Brummerstadt Iversen, “ Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide, Zn4Sb3: A Combined Maximum Entropy Method X-ray Electron Density and AbInitio Electronic Structure Study”, Chemistry-A European Jourmal, vol.10, pp.3861-3870, 2004.
〔21〕Soon-Chul Ur, Philip Nash, Il-Ho Kim, “Mechanical alloying and thermoelectric properties of Zn4Sb3”, Journal of Materials Science,vol.38, pp.3553-3558, 2003
〔22〕A. Wrona,K. Bilewska, J. Mazur,M. Lis, M. Staszewski, “Properties of thermoelectric Zn-Sb type material diretly synthesized by spark plasma sintering”, Journal of Alloys and Compounds, vol.616, pp.350-355, 2014.
〔23〕G. Jeffrey Snyder and Eric S. Toberer, “Complex thermoelectric materials”, Nature Materials, vol.7, pp.105-114, 2008
〔24〕Chinatsu Okamura, Takashi Ueda, Kazuhiro Hasezaki, “Preparation of Single Phase β-Zn4Sb3 Thermoelectric Materials by Mechanical Grinding Process”, Materials Transactions, vol.51, pp.152-155, 2010.
〔25〕Chinatsu Okamura, Takashi Ueda, Kazuhiro Hasezaki, “Preparation of Single-Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process”, Materials Transactions,vol.51, pp.860-862, 2010.
〔26〕Marisol Martín-González, O. Caballero-Calero, P. Díaz-Chao, “Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field”, Renewable and Sustainable Energy Reviews, vol.24, pp.288-305, 2013.
〔27〕Soon-Chul Ur, Philip Nash,Recardo Schwarz, “Mechanical and Thermoelectric properties of Zn4Sb3 and Zn4Sb3+Zn Directly Synthesizes Using Elemental Powders”, METALS AND MATERIALS International, vol.11, pp.435-411, 2005.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2015-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明