博碩士論文 101329021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.139.236.89
姓名 徐蔚(Wei Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 異質接面矽晶太陽能電池製備與光電轉換效率之優化探討
(The fabrication and optimization of silicon hetero-junction solar cells for high conversion efficiency)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 異質接面太陽能電池(HIT)相較傳統矽晶電池(Diffusion cells)有幾項優點: 低溫低耗能製程、較高的開路電壓(Voc)與較好的溫度特性。本研究以電子迴旋共振化學氣相沉積法(Electron Cyclotron Resonance Chemical Vapor Deposition, ECRCVD)搭配電漿輔助化學氣相沉積法(Plasma Enhanced Chemical Vapor Deposition, PECVD)互相結合,來成長異質接面矽晶太陽能電池所需的摻雜層及鈍化層,並探討太陽能電池在光電特性與轉換效率上的表現。ECRCVD具有高沉積速率、低工作壓力、低離子轟擊且無電極汙染等優點,因此本研究利用ECR製作硼摻雜層當作射極層(Emitter)。而PECVD具有低沉積速率且容易成長高品質的超薄鈍化膜(厚度~5nm)與磷摻雜薄膜,因此本研究藉由PECVD沉積優良的鈍化層和背表面電場(BSF)來研製異質矽晶太陽能電池的效率優化探討。
本研究分別對優化載子生命週期、氫化非晶矽薄膜厚度、單晶矽基板厚度、摻雜層厚度與不同金字塔基板的數項製程因子對太陽能電池之影響進行討論。首先是使用pi-ip、ni-in堆疊結構分析生命週期,及對開路電壓與效率之影響;而在異質接面矽晶太陽能電池方面,利用電池結構為 Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/ITO/Ag 於n型平面矽晶基板上調變氫化非晶矽薄膜厚度為0~10 nm時,可於10 nm鈍化薄膜製作而成面積1×1 cm2之異質接面矽晶太陽能電池的開路電壓可達690 mV;另外在調變單晶矽基板厚度由180 μm至50 μm時,在50 μm之n型平面超薄矽晶基板,可有效地降低載子複合速率到6 cm/s,且可得到最佳光電轉換效率: 開路電壓651 mV、短路電流29.28 mA/cm2、填充因子65.40 %、轉換效率12.46 %,由於超薄基板亦可降低太陽能電池晶片成本,因此預期會是往後極力發展的目標之一;固定摻雜層厚度為20 nm時有較佳的效率,因為在電性表現較好、載子濃度足夠;最後則是以不同金字塔尺寸基板所製作的異質接面太陽能電池做相互比較並分析,在厚度為200 μm 之n型矽晶基板上具有金字塔顆粒大小為3~5 μm,製作而成的異質接面矽晶太陽能電池可得到最佳光電轉換效率: 開路電壓660 mV、短路電流36.71 mA/cm2、填充因子71.1 %、轉換效率17.2 %。
摘要(英) Heterojunction with Intrinsic Thin layer (HIT) solar cells have some advantages about low temperature, low power, high open circuit voltage, and good temperature coefficient. They are better than Diffusion cells. In this study, ECRCVD was used for the deposition of high doping silicon thin films, and PECVD was used for the deposition of high doping silicon thin films and passivation layers. These thin films were deposited on single-crystalline silicon substrate to fabricate the silicon hetero-junction solar cells. The optical properties, electrical properties, and solar cell performance of hetero-junction solar cells were investigated. ECRCVD has advantage about high deposition, low working pressure, low ion bombardment, and no electrode contamination. The boron-doped layer was deposited by ECR as emitter in HIT solar cells. On the other hand, the high quality passivation layers and the back surface field of phosphorus-doped layer were deposited by PECVD to fabricate the silicon hetero-junction solar cells.
We will investigate the optimization of carrier lifetime, different passivation layer, different wafer thickness, different doping layer, and different texture wafers. First, we are going to improve Voc and investigate the carrier lifetime with the structure of pi-ip and ni-in. The structure of HIT solar cell is Ag/ITO/a-Si:H(p)/a-Si:H(i)/c-Si(n)/a-Si:H(i)/a-Si:H(n)/ITO /Ag. The characteristics of hetero-junction solar cell on n-type planar substrate with the 10 nm-thick passivation layer are shown as follow: Voc = 690 mV in the area of 1 cm2. Moreover, the different thickness of wafers varying from 180 μm to 50 μm were also investigated. For 50 μm-thick substrate, the characteristics of hetero-junction solar cell on n-type planar substrate were shown as follow: surface recombination rate: 6 cm/s, Voc = 651 mV, Jsc = 29.28 mA/cm2, F.F. = 65.40 %, Efficiency = 12.46 %. This result is outstanding, therefore we will continue to research the HIT solar cells with ultra-thin substrates in the future. In our study, using the 20 nm-thick doping layer as emitter can achieve good conversion efficiency. In the end, we modulate the different textured wafers for HIT solar cells. The characteristics of 200 μm-thick hetero-junction solar cell with the grain size around 3~5 μm on n-type textured substrate are shown as follow: Voc = 660 mV, Jsc = 36.7 mA/cm2, F.F. = 71.1 %, Efficiency = 17.2 %.
關鍵字(中) ★ 異質接面矽晶太陽能電池 關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 3
1-4 論文架構 4
第二章 基本原理與文獻回顧 5
2-1 太陽能電池基本運作與分析原理 5
2-2 化學氣相沉積法沉膜原理(CVD) 13
2-3 太陽能電池結構效率提升之方法與原理 15
2-3-1 表面粗糙化結構 15
2-3-2生命週期與表面複合效應 16
2-4 異質接面矽晶太陽能電池介紹 17
第三章 實驗設備與量測機台 20
3-1 矽薄膜沉積設備 20
3-1-1 電子迴旋共振化學氣相沉積設備 20
3-1-2 電漿輔助化學氣相沉膜設備 22
3-2 異質接面太陽能電池製備流程 23
3-2-1 試片清洗和製備流程 23
3-2-2 本質非晶矽薄膜的製備 24
3-2-3 磷摻雜矽薄膜的製備 24
3-2-4 硼摻雜矽薄膜的製備 24
3-2-5 太陽能電池的後段製備 24
3-3 太陽能電池後段製程設備介紹 25
3-3-1 離子濺鍍系統(Sputter) 25
3-3-2 電子槍蒸鍍系統(E-gun) 26
3-3-3 網版印刷機台(Screen Print) 26
3-3-4 快速熱退火(ARTS-RTA) 27
3-4 薄膜分析設備 28
3-4-1 橢圓偏振儀(Spectroscopic Ellipsometry) 28
3-4-2 霍爾量測系統(Hall effect sensor) 29
3-4-3 光電導生命週期量測儀(Photoconductance lifetime tester) 30
3-5 太陽能電池量測設備 31
3-5-1 光譜響應量子效率量測系統(IPCE) 31
3-5-2 太陽光模擬器(Solar simulator) 32
第四章 異質矽晶太陽能電池製備 33
4-1 優化太陽能電池的製備過程分析載子生命週期 33
4-1-1 製備太陽能電池在不同階段進行退火對載子生命週期之影響 33
4-1-2 在本質層上沉積不同功率的硼摻雜層對載子生命週期的影響 35
4-1-3 在不同氫稀釋比的本質層上沉積磷摻雜層對載子生命週期的影響 36
4-1-4 在本質層上沉積摻雜層的順序對太陽能電池的影響 38
4-2 改變氫化非晶矽的厚度對異質太陽能電池之影響 40
4-3 改變基板厚度對異質太陽能電池之影響 44
4-4 改變射極層和背表面電場厚度對異質太陽能電池之影響 49
4-5 不同金字塔基板對異質太陽能電池之影響 53
第五章 結論與未來展望 57
5-1 結論 57
5-1-1 異質接面太陽能電池 57
5-2 未來展望 59
5-2-1 硼摻雜層調控 59
5-2-2 透明導電膜和電極的製備 59
5-2-3 基板調控與優化 59
參考文獻 60
參考文獻 參考文獻
[1]國家奈米實驗室,取自http://www2.ndl.narl.org.tw/web/research/energy.php
[2]KRI Report, No. 8: Solar Cells, February, (2005).
[3]矽。取自http://zh.wikipedia.org/wiki/%E7%A1%85
[4]S Summers and H S Reehal, ”High rate growth of preferentially orientated crystalline silicon films by ECR plasma CVD”, 3rd World Conference on Photovoltaic Energy Conversion, p. 11–18, Osaka, Japan (2003).
[5]建德研究所資料/半導體提供檔案/Chap8_化學氣相沉積
[6]Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles (4e), McGraw-Hill, (2012).
[7]Pelanchon, F., P. Mialhe, and J.P. Charles, “The photocurrent and the open-circuit voltage of a silicon solar-cell”, solar cells, 28(1): p. 41–55, (1990).
[8]Schimpe, R.,Theory of reflection at the facet of a semiconductor-laser. Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-International Journal of Electronics and Communications, 46(2): p. 80–85, (1992).
[9]M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, (2001).
[10]莊達人編著, VLSI 製造技術, 高立圖書有限公司, p. 357, (1996).
[11]A. Matsuda and K. Tanaka, Thin Solar Film, Vol. 171, (1982).
[12]R. Robertson, D. Hils, H. Chatham, and A. Gallagher, “Radical species in argon‐silane discharges”, Appl. Phys. Lett, Vol. 544, (1983).
[13]陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[14]A. Matsuda, “Microcrystalline silicon. Growth and device application”, Journal of Non-Crystalline Solids, Vol. 338, p. 1–12, (2004).
[15]Min Gu Kang a , and S. Tark, “Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate”, Journal of Crystal Growth , Vol. 326, p. 14–18, (2011).
[16]Netherlands Energy Research Foundation ECN, NL1755 ZG Petten, The Netherlands/ Simplified evaluation method for light-biased effective lifetime measurements.
[17]T. S. Horanyi, T. Pavelka, and P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, p. 306–311, (1993).
[18]Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, and Kenta Matsuyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of photovoltaics , Vol. 4, NO. 1, (2014).
[19]Takahiro Mishima n, Mikio Taguchi, Hitoshi Sakata, and Eiji Maruyama, “Development status of high-efficiency HIT solar cells”, Solar Energy Materials & Solar Cells, (2010).
[20]F.Jay n, D.Muñoz, T.Desrues, E.Pihan, and V.Amaralde Oliveira, ”Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5% efficiency”, (2014).
[21]Thomas Muellera, Johnson Wonga and Armin G. Aberle, ”Heterojunction Silicon Wafer Solar Cells using Amorphous Silicon Suboxides for Interface Passivation”, (2012).
[22]Christophe Ballif, Loris Barraud, and Antoine Descoeudres, ”A-Si:H/c-Si heterojunctions: a future mainstream technology for high efficiency crystalline silicon solar cells”, (2011).
[23]R. Gogolin a,n, R.Ferre a, and M.Turcu, “Silicon heterojunction solar cells: Influence of H2-dilution on cell performance”, (2012).
[24]Hseuh-Chuan Lee and Lu-Sheng Hong, ”High-rate deposition of a-Si:H thin layers for high-performance silicon heterojunction solar cells”, (2013).
[25]Chia-Hsun Hsu, Shui-Yang Lien, and Dong-SingWuu, ”Effect of Hydrogen Content in Intrinsic a-Si:H on Performances of Heterojunction Solar Cells”, (2013).
[26]許元錫, “The comparative study of electrical and conversion efficiency performance for homo-junction and hetero-junction c-Si solar cells”, 國立中央大學, (2014).
[27]Donald A. Neamen, “Semiconductor Physics and Devices”, p. 177–180, (2003).
[28]Satoshi Tohoda, Daisuke Fujishima, Ayumu Yano, Akiyoshi Ogane, Kenta Matsuyama, and Yuya Nakamura, “Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer”, (2012).
指導教授 張正陽(Jenq-Yang Chang) 審核日期 2015-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明