博碩士論文 100389002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.188.233.69
姓名 陳宏碩(Hung-Shao Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 硫化鋅鎘量子點之製備、鑑定與應用
(Preparation, Characterization and Application of ZnxCd1-xS Quantum Dots)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發光二極體(light emitting diodes, LEDs)與螢光粉的複合元件由於具有高效率及技術可靠性,已成為具有潛力之節能方案,並在近年來受到廣泛的研究與討論,但傳統紅綠藍螢光粉因激發波段不同及其自我吸收效應,使其應用受限,相對的,量子點具有激發波段寬、發光波長可控性、高量子效率(quantum yield, QY)、被視為是可替代傳統螢光粉的新穎螢光粉材料,在本研究中藉由製備不同組成之三元ZnxCd1-xS量子點並將其與近紫外光LED結合形成LED元件,探討其封裝後之元件特性。
本研究分為兩部分,第一部分為利用高溫有機金屬裂解法製備合金化ZnxCd1-xS量子點,探討其組成及反應時間對量子點能帶邊緣與表面能態放射對量子效率之關係。研究結果發現當鋅之理論組成(x)大於0.5時,量子點的放射光譜由兩個放射峰組成並涵蓋可見光範圍形成白光量子點,且當反應時間增加,光譜向長波長方向移動,而涵蓋可見光範圍的兩個放射峰分別為能帶邊緣與表面能態放射。實驗結果推測量子點的高表面鋅含量是表面能態放射產生的主要原因且鋅與鎘的氧化程度直接影響整體之量子效率。此外,當改變量子點組成由x=0.5增加至0.8時,其粒徑由3.6縮小至3.1 nm,量子效率由26提升至56 %,能帶邊緣放射波長由440藍移至410 nm。分別將鋅含量x=0.5及0.8之樣品在室溫下時效2個月,進行合金化ZnxCd1-xS量子點的穩定性評估,其量子效率分別由26與56降至20與37 %,顯示其具有良好的穩定性。由這個部分可以得知,白光量子點的產生是由於能帶邊緣、表面能態放射的共存與量子點之氧化所導致,且可藉由精確控制ZnxCd1-xS量子點的組成與結構得到。
第二部分為元件特性之量測。將合金化ZnxCd1-xS量子點與矽膠及UV膠封裝混合後,以n-UV-LED為激發源結合而成的元件,探討量子點的添加量對元件色度座標(Commission international de I’Eclairage, CIE)、平均演色性指數(general color rendering index, CRI)、相關色溫(correlated color temperature, CCT)及發光效率(luminous efficiency)之影響。在定電流20 mA之元件特性量測結果中發現,當Zn0.8Cd0.2S量子點與矽基封裝膠的比例為1:10時,可得到CIE位於(0.36,0.33),CCT為4200 K,發光效率為4.12 lm/W,CRI為86之白光LED。當Zn0.8Cd0.2S量子點與UV膠混合比例為1:1時,可得CIE= (0.34,0.32),CCT為5000 K,發光效率為11.93 lm/W,CRI為87之白光LED。由以上結果得知,合金化ZnxCd1-xS量子點藉由調控組成及其與封裝膠的配比,可以有效調控CIE、CCT、CRI,得到高演色性的白光LED元件。
摘要(英) In recent years, phosphor-converted light emitting diodes (PC-LEDs) have attracted a significant amount of attention due to their high efficiency and reliability. Since the application of traditional R/G/B phosphor is limited by the narrow excitation band, different excitation wavelength and self-absorption problems, alternative materials should be developed. Because quantum dots (QDs) possess controllable emission wavelength, broad excitation band and high quantum efficiency (QY), they are regarded as promising candidates to replace traditional phosphors. In this study, a series of colloidal ternary semiconductor ZnxCd1-xS QDs have been prepared and the property of devices, which are formed by combination of QDs with n-UV-LED has been investigated.
This study includes two major parts. The first one is the effects of local atoms/valence band structures and surface/chemical compositions on QY of ZnxCd1-xS QDs. The results show that when Zn content is higher than 0.5, the emission wavelength involves entire visible spectra range with two emission wavelengths, caused by band-edge and surface state emission. Besides, both two peaks move to longer wavelength with increasing the reaction time. The surface state emission is affected by the oxidation degree of Zn and Cd and the formation of Zn-rich surface. In addition, the particle size changes from 3.6 to 3.1 nm, QY increases from 26 to 56 % and the peak of band-edge emission moves from 440 to 410 nm with increasing Zn content from 0.5 to 0.8, respectively. When the sample is aged at room temperature for 2 months, the QY decreases from 26 to 20 % and 56 to 37 % for Zn0.5Cd0.5S (Zn0.5) and Zn0.8Cd0.2S (Zn0.8), respectively. The white QDs (WQDs) can be obtained by controlling the compositions and structure of ZnxCd1-xS QDs due to the coexistence of band-edge and surface state emission and oxidation.
The second part focuses on the devices fabrication and measurement. Zn0.5 or Zn0.8 QDs are dispersed in silicone (Si) and UV resin under desired ratios. When the ratio of Zn0.8 QDs and Si is 1:10 and forward current is set at 20 mA, the chromaticity coordinates (Commission international de I’Eclairage, CIE) is (0.36,0.33), correlated color temperature (CCT) is 4200 K, color rendering index (CRI) is 86 and luminous efficiency is 4.12 lm/W. On the other hand, for the ratio of Zn0.8 QDs and UV resin is 1:1, the CIE, CCT, CRI and luminous efficiency are (0.34,0.32), 5000 K, 87 and 11.93 lm/W, respectively. Based on above results, we can conclude that QD-based WLED device with a high CRI can be obtained by controlling the compositions and blending content of ZnxCd1-xS QDs.
關鍵字(中) ★ 硫化鋅鎘
★ 量子點
★ 白光發光二極體
★ 表面能態放射
★ 量子效率
關鍵字(英) ★ ZnCdS
★ quantum dots
★ white light emitting diodes
★ surface state emission
★ quantum yield
論文目次 摘要 i
Abstract iv
誌謝 vi
Table of Contents vii
List of Figures ix
List of Tables xiii
Chapter I Introduction 1
1.1 Quantum Dots (QDs) 2
1.2 Surface Passivation and Alloying Process in QY Improvement for QDs 4
1.3 White Light Quantum Dots (WQDs) 9
1.4 QDs-based White LEDs (WLEDs) 17
1.5 Motivation 23
Chapter II Experimental Section 24
2.1 Chemicals and Materials 24
2.2 Preparation of ZnCdS QDs 26
2.2.1. Preparation of ZnxCd1-xS QDs 26
2.2.2. Stability of photoluminescence properties 28
2.3 Characterization of QDs 29
2.3.1 UV-visible absorption spectroscopy (UV-vis) 29
2.3.2 Fluorescence (FL) 29
2.3.3 Transmission electron microscopy (TEM) 29
2.3.4 X-ray diffraction (XRD) 31
2.3.5 X-ray photoelectron spectroscopy (XPS) 31
2.3.6 Inductively coupled plasma–atomic emission spectrometer (ICP-AES) 31
2.3.7 X-ray absorption spectroscopy (XAS) 32
2.3.8 Ultraviolet photoelectron spectroscopy (UPS)33
2.3.9 QY measurement 33
2.4 Preparations of WLED Devices 35
Chapter III Results and Discussion 37
3.1 The Physical and Optical Properties of Znx QDs 37
3.1.1 FL and TEM results 37
3.1.2 XRD patterns 46
3.1.3 XPS and ICP results 49
3.1.4 XAS results 52
3.1.5 UPS results 58
3.1.6 Stability of QDs 58
3.1.7 Summary 61
3.2 The Application of Znx QDs on LED Devices 62
3.2.1 Optical properties of WQDs 62
3.2.2 Electroluminescence of Si resin-based WLEDs64
3.2.3 Electroluminescence of UV resin-based WLEDs72
3.2.4 Summary 79
Chapter IV Conclusion 80
Reference 82
參考文獻 [1]C. Nützenadel, A. Züttel, D. Chartouni, G. Schmid and L .Schlapbach, Eur. Phys. J. 245 (2000) D8.
[2]X. Peng, J. Wickmham and A. P. Alivisatos, J. Am. Chem. Soc. 120 (1998) 5343.
[3]Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123 (2001) 183.
[4]L. Qu, Z. A. Peng and X. Peng, Nano Lett. 1 (2001) 333.
[5]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B 101 (1997) 9463.
[6]T. Fang, K. Ma, L. Ma, J. Bai, X. Li, H. Song and H. Guo, J. Phys. Chem. C 116 (2012) 12346.
[7]B. L. Cushing, V. L. Kolesnichenko and C. J. O’Connor, Chem. Rev. 104 (2004) 3893.
[8]C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, Chem. Rev. 105 (2005) 1025.
[9]J. A. Dahl, B. L. S. Maddux and J. E. Hutchison, Chem. Rev. 107 (2007) 2228.
[10]M. V. Kovalenko, M. Scheele and D. V. Talapin, Science 324 (2009) 1417.
[11]J. K. Lorenz and A. B. Ellis, J. Am. Chem. Soc. 120 (1998) 10970.
[12]D. V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson and H. Weller, J. Phys. Chem. B 108 (2004) 18826.
[13]J. Zhang, Y. Tang, K. Lee and M. Ouyang, Science 327 (2010) 1634.
[14]N. J. Borys, M. J. Walter, J. Huang, D. V. Talapin and J. M. Luption, Science 330 (2010) 1371.
[15]M. D. Regulacio and M. Y. Han, Acc. Chem. Res. 43 (2010) 621.
[16]S. Sain, S. Patra and S. K. Pradhan, J. Phys. D: Appl. Phys. 44 (2011) 075101.
[17]W. Wang, I. Germanenko and M. S. El-Shall, Chem. Mater. 14 (2002) 3028.
[18]D. V. Petrov, B. S. Santos, G. A. L. Pereira and C. de Mello Donega, J. Phys. Chem. B 106 (2002) 5325.
[19]H. Kumano, Y. Hitaka and I. Suemune, Appl. Phys. Lett. 82 (2003) 4277.
[20]H. Kumano, Y. Hitaka and I. Suemune, Phys. Stat. Sol. (b) 241 (2004) 503.
[21]Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li and Y. F. Li, Adv. Funct. Mater. 15 (2005) 443.
[22]K. Tomihira, D. Kim and M. Nakayama, J. Lumin. 112 (2005) 131.
[23]N. Safta, A. Sakly, H. Mejri and M. A. Zaidi, Eur. Phys. J. B 53 (2006) 35.
[24]J. Ouyang, J. A. Ripmeester, X. Wu, D. Kingston, K. Yu, A. G. Joly, and W. Chen, J. Phys. Chem. C 111 (2007) 16261.
[25]Y. F. Lin, Y. J. Hsu, S. Y. Lu, K. T. Chen and T. Y. Tseng, J. Phys. Chem. C 111 (2007) 13418.
[26]S. Sadhu and A. Patra, J. Chem. Sci. 120 (2008) 557.
[27]S. Okahara, D. G. Kim and M. Nakayama, J. Korean Phys. Soc. 53 (2008) 42.
[28]J. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. H. Wu, J. A. Ripmeester and K. Yu, J. Phys. Chem. C 112 (2008) 4908.
[29]M. R. Kim, S. Y. Park and D. J. Jang, J. Phys. Chem. C 114 (2010) 6452.
[30]R. Sethi, L. Kumar, P. K. Sharma and A. C. Pandey, Nanoscale Res. Lett. 5 (2010) 96.
[31]J. Zhu, J. H. Zhang, J. B. Zhen, C. X. Chen, J. Lu and S. Chen, Physica B 405 (2010) 3452.
[32]X. Zhong, M. Han, Z. Dong, T. J. White and W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589.
[33]Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki and T. Mukai, Jpn. J. Appl. Phys. 41 (2002) L371.
[34]H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu and Q. Su, IEEE Photon. Technol. Lett. 17 (2005) 1160.
[35]J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi and R. K. Wu, IEEE Photon. Technol. Lett. 15 (2003) 18.
[36]C. Y. Shen, K. Li, Q. L. Hou, H. J. Feng and X. Y. Dong, IEEE Photon. Technol. Lett. 22 (2010) 884.
[37]X. Zhong, Z. Zhang, S. Liu, M. Han and W. Knoll, J. Phys. Chem. B 108 (2004) 15552.
[38]J. U. Kim, Y. S. Kim and H. Yang, Mater. Lett. 63 (2009) 614.
[39]H. Yang and Y. S. Kim, J. Lumin. 128 (2008) 1570.
[40]H. S. Jang, Y. H. Won and D. Y. Jeon, Appl. Phys. B 95 (2009) 715.
[41]F. Hide, P. Kozody, S. P. DenBaars and A. J. Heeger, Appl. Phys. Lett. 70 (1997) 2664.
[42]C. H. Kuo, J. K. Sheu, S. J. Chang, Y. K. Su, L. W. Wu, J. M. Tsai, C. H. Lu and R. K. Wu, Jpn. J. Appl. Phys. 42 (2003) 2284.
[43]A. P. Alivisatos, Science 271 (1996) 933.
[44]V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370 (1994) 354.
[45]M. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science 281 (1998) 2013.
[46]N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, Science 295 (2002) 1506.
[47]R. E. Bailey and S. Nie, J. Am. Chem. Soc. 125 (2003) 7100.
[48]M. Brumer, A. Kigel, L. Amirav, A. Sashchiuk O. Solomesch, N. Tessler and E. Lifshitz, Adv. Funct. Mater. 15 (2005) 1111.
[49]H. Lee, H. Yang and P. H. Holloway, J. Lumin. 126 (2007) 314.
[50]C. Wang, Y. Jiang, L. Chen, S. Li, G. Li and Z. Zhang, Mater. Chem. Phys. 116 (2009) 388.
[51]Y. Gao, Q. Zhang, Q. Gao, Y. Tian, W. Zhou and L. Zheng, Mater. Chem. Phys. 115 (2009) 724.
[52]D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett. 1 (2001) 207.
[53]S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach and J. Feldmann, Adv. Mater. 19 (2007) 569.
[54]M. J. Bowers II, J. R. McBride and S. J. Rosenthal, J. Am. Chem. Soc. 127 (2005) 15378.
[55]X. Liu, Y. Jiang, C. Wang, S. Li, X. Lan and Y. Chen, Phys. Status Solidi A 207 (2010) 2472.
[56]T. E. Rosson, S. M. Claiborne, J. R. McBride, B. S. Stratton and S. J. Rosenthal, J. Am. Chem. Soc. 134 (2012) 8006.
[57]C. C. Shen and W. L. Tseng, Inorg. Chem. 48 (2009) 8689.
[58]A. D. Dukes III., M. A. Schreuder, J. A. Sammons, J. R. McBride, N. J. Smith and S. J. Rosenthal, J. Chem. Phys. 129 (2008) 121102.
[59]M. J. Bowers II, J. R. McBride, M. D. Garrett, J. A. Sammons, A. D. Dukes, M. A. Schreuder, T. L. Watt, A. R. Lupini, S. J. Pennycook and S. J. Rosenthal, J. Am. Chem. Soc. 131 (2009) 5730.
[60]M. A. Schreuder, J. R. McBride, A. D. Dukes III, J. A. Sammons and S. J. Rosenthal, J. Phys. Chem. C 113 (2009) 8169.
[61]A. D. Dukes III, J. R. McBride and S. J. Rosenthal, Chem. Mater. 22 (2010) 6402.
[62]J. D. Gosnell, S. J. Rosenthal and S. M. Weiss, IEEE Photon. Technol. Lett. 22 (2010) 541.
[63]M. A. Schreuder, K. Xiao, I. N. Ivanov, S. M. Weiss and S. J. Rosenthal, Nano Lett. 10 (2010) 573.
[64]A. D. Dukes III, P. C. Samson, J. D. Keene, L. M. Davis, J. P. Wikswo and S. J. Rosenthal, J. Phys. Chem. A 115 (2011) 4076..
[65]T. J. Pennycook, J. R. McBride, S. J. Rosenthal, S. J. Pennycook and S. T. Pantelides, Nano Lett. 12 (2012) 3038.
[66]S. M. Harrell, J. R. McBride and S. J. Rosenthal, Chem. Mater. 25 (2013) 1199.
[67]J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park and S. Y. Choi, Appl. Phys. Lett. 82 (2003) 683.
[68]H. S. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu and W. F. Su, IEEE Photon. Technol. Lett. 18 (2006) 1430.
[69]H. S. Chen, C. K. Hsu and H. Y. Hong, IEEE Photon. Technol. Lett. 18 (2006) 193.
[70]M. Achermann, M. A. Petruska and D. D. Koleske, M. H. Crawford, and V. I. Klimov, Nano Lett. 6 (2006) 1396.
[71]P. Zhong, G. He and M. Zhang, Opt. Express 20 (2012) 9122.
[72]N. Narendran, N. Maliyagoda, L. Deng and R. Pysar, SPIE Proc. 137 (2001) 4445.
[73]J. Zhnag, R. Xie and W. Yang, Chem. Mater. 23 (2011) 3357.
[74]T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim and K. Kim, Nature Photonics 5 (2011) 176.
[75]L. Qian, Y. Zheng, J. Xue and P. H. Holloway, Nature Photonics 5 (2011) 543.
[76]X. Wang, W. Li and K. Sun, J. Mater. Chem. 21 (2011) 8558.
[77]D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. Wang, G. A. Ozin and Z. Lu, Nano Lett. 11 (2011) 1585.
[78]S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, J. Phys. Chem. C 111 (2007) 13256.
[79]N. T. Tran and F. G. Shi, J. Lightwave Technol. 26 (2008) 3556.
[80]H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik and A. Eychmüller, Nano Today 6 (2011) 632.
[81]H. S. Jang, H. Yang, S. W. Kim, J. Y. Han, S. G. Lee and D. Y. Jeon, Adv. Mater. 20 (2008) 2696.
[82]S. Nizamoglu, E. Mutlugun, O. Akyuz, N. K. Perkgoz, H. V. Demir, L. Liebscher, S. Sapra, N. Gaponik and A. Eychmüller, New J. Phys. 10 (2008) 023026.
[83]S. Chandramohan, B. D. Ryu, H. K. Kim, C. H. Hong and E. K. Suh, Optics Lett. 36 (2011) 802.
[84]M. A. Schreuder, J. D. Gosnell, N. J. Smith, M. R. Warnement, S. M. Weiss and S. J. Rosenthal, J. Mater. Chem. 18 (2008) 970.
[85]S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers and M. J. Eller. Phys. Rev. B 52 (1995) 2995.
[86]H. S. Chen, S. R. Chung, T. Y. Chen and K. W. Wang, J. Mater. Chem. C 2 (2014) 2664.
[87]H. S. Chen, S. R. Chung, Y. C. Chen, T. Y. Chen, C. Y. Liu and K. W. Wang, CrystEngComm 17 (2015) 5032.
[88]H. S. Chen, K. W. Wang, S. S. Chen and S. R. Chung, Optics Lett. 38 (2013) 2080.
[89]X. H. Zhong, Y. Y. Feng, W. Knoll and M. Y. Han, J. Am. Chem. Soc. 125 (2003) 13559.
[90]B. A. Korgel and H. G. Monbouquette, Langmuir 16 (2000) 3588.
[91]O. I. Micic, J. Sprague, Z. Lu and A. J. Nozik, Appl. Phys. Lett. 68 (1996) 3150.
[92]L. Y. Chen, P. A. Yang, C. H. Tseng, B. J. Hwang and C. H. Chen, Appl. Phys. Lett. 100 (2012) 163113.
[93]J. Mao, J. N. Yao, L. N. Wang and W. S. Liu, J. Colloid Interface Sci. 319 (2008) 353.
[94]H. Li, W. Y. Shih and W. H. Shih, Nanotechnology 18 (2007) 205604.
[95]W. Zheng, Y. L. Wu, Y. T. Chen, Z. C. Feng, J. F. Lee, P. Becla and R. S. Zheng, Adv. Mater. Res. 706 (2013) 56.
[96]S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey and C. D. Donega, Nano Lett. 3 (2003) 503.
[97]D. W. Ayele, H. M. Chen, W. N. Su, C. J. Pan, L. Y. Chen,H. L. Chou, J. H. Cheng, B. J. Hwang and J. F. Lee, Chem. Eur. J. 17 (2011) 5737.
[98]S. Nizamoglu, T. Ozel, E. Sari and H. V. Demir, Nanotechnology 18 (2007) 065709.
[99]Y. L. Li, Y. R. Huang and Y. H. Lai, Appl. Phys. Lett. 91 (2007) 181113.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2015-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明