博碩士論文 102329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.225.72.181
姓名 陳雅青(Ya-ching Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 不同碳鏈長短的表面配位基對ZnCdS奈米晶之光學性質影響及其白光發光二極體之應用研究
(The effect of noncoordinating surface ligands with different carbon chain lengths on the optical properties of ZnCdS nanocrystals and their application in white light emitting diodes)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體奈米晶因其具有特殊的可調性以及在發光二極體(light emitting diodes, LEDs)、雷射、生物標籤等領域的應用,在近幾年受到廣泛的研究與討論。一般商業化的發光二極體主要是由藍光晶片與傳統螢光粉所製成,但傳統螢光粉具有散射效應、低演色性以及多重吸收效應等缺點,因此光學性質可藉由顆粒大小與組成來調控的半導體奈米晶被視為是可取代傳統螢光粉的材料。
本研究分為兩部分,在第一部分,藉由化學合成法製備高效能之白光ZnCdS奈米晶,白光的產生來自於能帶邊緣與表面能態之放射,並探討量子效率(quantum yield, QY)與不同表面配位基對奈米晶表面造成的鈍化效應之關係,由實驗結果可發現利用短碳鏈的烯類(decene, DE)作為表面配位基,ZnCdS奈米晶之量子效率可達到99.0 %,主要由於奈米晶表面具有較高的鋅含量以及較少的氧化物所致。
在第二部分中,使用第一部分製備的ZnCdS奈米晶與UV晶片為激發光源製備之白光LED元件,而元件之色度座標(Commission international de I’Eclairage, CIE)、演色性指數(color rendering index, CRI)、相關色溫(correlated color temperature, CCT)及發光效率(luminous efficiency)可藉由使用不同放光波長的ZnCdS奈米晶,表面配位基,反應時間,奈米晶含量及封裝方式來控制。研究結果指出,使用單一ZnCdS白光奈米晶為螢光粉並以UV晶片為激發光源,可得到CIE=(0.32, 0.30),CRI=82,CCT=6811 K,發光效率為4.26 lm/W之白光LED,此結果顯示出ZnCdS奈米晶具有作為白光螢光材料之潛力。
摘要(英) In recent years, II-VI semiconductor nanocrystals (NCs, also called quantum dots, QDs) have received great attention due to their novel tunable properties and their potential applications in light emitting diodes (LEDs), lasers and biological labels. The commercial LEDs are based on the blue LED chips and traditional phosphors, which suffer from the scattering, low color rendering index (CRI) and the reabsorption problem of the multiphase phosphors. Since the optical properties of semiconductor NCs can be tuned in the visible light range by controlling not only the particle sizes but also the compositions of the NCs, NCs are regarded as promising materials to replace traditional phosphors in the fabrication of LEDs. In this study, the colloidal ternary semiconductor ZnCdS NCs with wide emission and high quantum yields (QYs) have been prepared and used as nanophosphors in white light emitting diodes (WLEDs). The materials and devices properties of ZnCdS NCs have been investigated.
This study includes two major parts. In the first part, the highly effective ternary ZnCdS NCs with white light emission have been synthesized successfully. The white light emission results from the combination of band edge and broad surface state emissions. The correlation between QYs and the passivation effects of alkenes with different carbon chain lengths used as surface ligands of ZnCdS have been explored. The QY of ZnCdS NCs prepared by decene (DE) can reach to 99.0 %, attributed to the formation of a metallic Zn-rich surface and the less oxidation of Zn and Cd on the NCs surface.
In the second part, the WLEDs based on the ZnCdS NCs and UV chips have been prepared. The optical properties of ZnCdS NCs-based WLEDs including Commission Internationale de l’Eclairage (CIE) chromaticity coordinates, correlated color temperature (CCT), CRI and luminous efficiency can be adjusted by the various ZnCdS NCs, using different carbon chain lengths of alkenes as surface ligands, reaction time, NCs contents and encapsulation methods. The optimal conditions of CIE, CRI, CCT and luminous efficiency for ZnCdS NCs-based WLEDs are (0.32, 0.30), 82, 6811 K and 4.26 lm/W, respectively by the UV chip with only one type of ZnCdS NCs layer. The results have exhibited the potential application of ZnCdS NCs as nanophosphors in WLEDs.
關鍵字(中) ★ 硫化鋅鎘
★ 奈米晶
★ 白光發光二極體
★ 量子效率
★ 表面配位基
關鍵字(英) ★ ZnCdS
★ quantum dots
★ nanocrystals
★ white light emitting diodes
★ quantum yield
★ surface ligand
論文目次 摘要 i
Abstract iii
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter I Introduction 1
1.1 White light emitting NCs 2
1.2 Surface ligands effect 7
1.3 Semiconductor NCs-based WLEDs 9
1.4 Motivation 13
Chapter II Experimental Section 14
2.1 Chemicals and materials 14
2.2 Preparation of ZnCdS NCs 16
2.3 Characterization of NCs 18
2.3.1 Fourier transform infrared spectroscopy (FTIR) 18
2.3.2 Ultraviolet -visible absorption spectroscopy (UV-vis) 18
2.3.3 Fluorescence spectroscopy (FL) 18
2.3.4 Transmission electron microscopy (TEM) 18
2.3.5 X-ray diffractometer (XRD) 20
2.3.6 X-ray photoelectron spectroscopy (XPS) 20
2.3.7 Inductively coupled plasma - atomic emission spectrometer (ICP-AES) 20
2.3.8 X-ray absorption spectroscopy (XAS) 21
2.3.9 Quantum yield (QY) measurement 22
2.4 Preparations of WLED devices 22
Chapter III Results and Discussion 25
3.1 The physical and chemical properties of ZnCdS NCs 25
3.1.1 FL and FTIR spectra 25
3.1.2 TEM results 29
3.1.3 XRD patterns 32
3.1.4 XPS spectra 32
3.1.5 XAS results 36
3.1.6 Summary 42
3.2 The application of ZnCdS NCs on WLED devices 43
3.2.1 Optical properties of white light emitting ZnCdS NCs 43
3.2.2 Electroluminescence of ZnCdS NCs-based WLEDs 45
3.2.3 Summary 54
Chapter IV Conclusion 55
References 56

參考文獻 [1] A. P. Alivisatos, Science 271 (1996) 933.
[2] C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.
[3] A. P. Alivisatos, J. Phys. Chem. 100 (1996) 13226.
[4] M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. L. Rogach and H. Weller, J. Appl. Phys. 87 (2000) 2297.
[5] H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, E. L. Tomas, M. G. Bawendi and M. F. Rubner, J. Appl. Phys. 83 (1998) 7965.
[6] V. L. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eilser and M. G. Bawendi, Science 290 (2000) 314.
[7] J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni and M. G. Bawendi, J. Am. Chem. Soc. 128 (2006) 2526.
[8] E. Jang, S. Jun, H. Jang, J. Lim, B. Kim and Y. Kim, Adv. Mater. 22 (2010) 3076.
[9] X. Wang, X. Yan, W. Li and K. Sun, Adv. Mater. 24 (2012) 2742.
[10] K. A. Denault, A. A. Mikhailovsky, S. Brinkley, S. P. Denbaars and R. Seshadri, J. Mater. Chem. C 1 (2013) 1461.
[11] X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 120 (1998) 5343.
[12] R. Sethi, L. Kumar, P. K. Sharma and A. C. Pandey, Nanoscale Res. Lett. 5 (2010) 96.
[13] Y. C. Pu and Y. J. Hsu, Nanoscale 6 (2014) 3881.
[14] A. M. Smith and S. Nie, Acc. Chem. Res. 43 (2010) 190.
[15] X. Zhong, M. Han, Z. Dong, T. J. White and W. Knoll, J. Am. Chem. Soc. 125 (2003) 8589.
[16] S. R. Chung, K. W. Wang and M. W. Wang, J. Nanosci. Nanotechnol. 13 (2013) 4358.
[17] N. A. Hill and K. B. Whale, J. Chem. Phys. 100 (1994) 2831.
[18] D. F. Underwood, T. Kippeny and S. J. Rosenthal, J. Phys. Chem. B 105 (2001) 436.
[19] S. Sapra, S. Mayilo, T. A. Klar, A. L. Rogach and J. Feldmann, Adv. Mater. 19 (2007) 569.
[20] A. A. Bol and A. Meijerink, Phys. Chem. Chem. Phys. 3 (2001) 2105.
[21] K. W. Cheah, L. Ling and X. Huang, Nanotechnology 13 (2002) 238.
[22] H. Y. Lu, S. Y. Chu and S. S. Tan, Jpn. J. Appl. Phys. 44 (2005) 5282.
[23] H. S. Chen, S. J. J. Wang, C. J. Lo and J. Y. Chi, Appl. Phys. Lett. 86 (2005) 131905.
[24] X. Lü, J. Yang, Y. Fu, Q. Liu, B. Qi, C. Lü and Z. Su, Nanotechnology 21 (2010) 115702.
[25] S. K. Panda, S. G. Hichey, H. V. Demir and A. Eychmüller, Angew. Chem. 123 (2011) 4524.
[26] M. J. Bowers II, J. R. McBride and S. J. Rosenthal, J. Am. Chem. Soc. 127 (2005) 15378.
[27] W. S. Song and H. Yang, Chem. Mater. 24 (2012) 1961.
[28] J. Lim, S. Jun, E. Jang, H. Baik, H. Kim and J. Cho, Adv. Mater. 19 (2007) 1927.
[29] M. R. Kim, S. Y. Park and D. J. Jang, J. Phys. Chem. C 114 (2010) 6452.
[30] H. S. Chen, S. R. Chung, T. Y. Chen and K. W. Wang, J. Mater. Chem. C 2 (2014) 2664.
[31] H. S. Chen, S. R. Chung, Y. C. Chen, T. Y. Chen, C. Y. Liu and K. W. Wang, CrystEngComm 2015 DOI: 10.1039/c5ce00746a.
[32] Y. Yin and A. P. Alivisatos, Nature 437 (2005) 664.
[33] M. A. Schreuder, J. R. McBride, A. D. Dukes III, J. A. Sammons and S. J. Rosenthal, J. Phys. Chem. C 113 (2009) 8169.
[34] N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana and X. Peng, J. Am. Chem. Soc. 129 (2007) 9500.
[35] W. W. Yu, Y. A. Wang and X. G. Peng, Chem. Mater. 15 (2003) 4300.
[36] D. Battaglia, X. Peng, Nano Lett. 2 (2002) 1027.
[37] S. Kim and M. G. Bawendi, J. Am. Chem. Soc. 125 (2003) 14652.
[38] A. M. Munro, I. J. Plante, M. S. Ng and D. S. Ginger, J. Phys. Chem. C 111 (2007) 6220.
[39] R. Comparelli, F. Zezza, M. Striccoli, M. L. Curri, R. Tommasi and A. Agostiano, Mater. Sci. Eng. C 23 (2003) 1083.
[40] Q. Dai, C. E. Duty and M. Z. Hu, Small 6 (2010) 1577.
[41] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Nano Lett. 7 (2007) 2196.
[42] S. Nizamoglu, T. Ozel, E. Sari and H. V. Demir, Nanotechnology 18 (2007) 065709.
[43] S. Nizamoglu and H. V. Demir, J. Opt. A: Pure Appl. Opt. 9 (2007) S419.
[44] H. Chen, C. Hsu and H. Hong, IEEE Photon. Technol. Lett. 18 (2006) 193.
[45] S. Nizamoglu, E. Mutlugun, O. Akyuz, N. K. Perkgoz, H. V. Demir, L. Liebscher, S. Sapra, N. Gaponik and A. Eychmüller, New J. Phys. 10 (2008) 023026.
[46] M. A. Schreuder, J. D. Gosnell, N. J Smith, M. R. Warnement, S. M. Weiss and S. J. Rosenthal, J. Mater. Chem. 18 (2008) 970.
[47] J. D. Gosnell, S. J. Rosenthal and S. M. Weiss, IEEE Photon. Technol. Lett. 22 (2010) 541.
[48] M. A. Schreuder, K. Xiao, I. N. Ivanov, S. M. Weiss and S. J. Rosenthal, Nano Lett. 10 (2010) 573.
[49] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers and M. J. Eller, Phys. Rev. B 52 (1995) 2995.
[50] Y. C. Chen, H. S. Chen, S. R. Chung, J. K. Chang and K. W. Wang, J. Mater. Chem. C 3 (2015) 5881.
[51] O. I. Micic, J. Sprague, Z. Lu and A. J. Nozik, Appl. Phys. Lett. 68 (1996) 3150.
[52] T. H. Tran, M. M. Lezhnina and U. Kynast, J. Mater. Chem. 21 (2011) 12819.
[53] D. C. Onwudiwe, C. A. Strydom and O. S. Oluwafemi, New J. Chem. 37 (2013) 834.
[54] H. Asami, Y. Abe, T. Ohtsu, I. Kamiya and M. Hara, J. Phys. Chem. B 107 (2003) 12566.
[55] A. Asok, M. N. Gandhi and A. R. Kulkarni, Nanoscale 4 (2012) 4943.
[56] L. Y. Chen, P. A. Yang, C. H. Tseng, B. J. Hwang and C. H. Chen, Appl. Phys. Lett. 100 (2012) 163113.
指導教授 王冠文(Kuan-wen Wang) 審核日期 2015-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明