博碩士論文 102329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.219.81.129
姓名 陳泓菁(Hung-ching Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
(NIB anode material of Tin dioxide/Graphene Nanocomposites Synthesized using Supercritical carbon dioxide Fluid)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要以化學還原法為基礎,利用超臨界二氧化碳製備二氧化錫 與碳材之複合材,並應用於鈉離子電池負極材料。藉由超臨界之高擴散性, 表面張力趨近零等優點,以提高二氧化錫於石墨烯上分散性,並觀察其電化 學特性。
實驗結果指出,超臨界製備之二氧化錫顆粒尺寸(SnO2-SC, 2.5nm)小於 傳統大氣製程(SnO2-air, 5 nm),在 0.02 A/g 充放電速率下,得到 95 mAh/g 之可逆電容。藉由添加相同含量(20 wt.%)之石墨烯與碳管藉此提升其導電 性並作為緩衝基底,並比較不同碳材之特性。20 w%之碳管添加僅能提升至 149 mAh/g,而 20 wt.%石墨烯則可提升至 275 mAh/g 的高可逆電容量,並 同時提升高速充放電能力,這是由於石墨烯擁有較高導電性與表面活性位 置。並當做緩衝區緩衝二氧化錫之高體積膨脹,使循環壽命得以提升,且在 超臨界的均勻分散下,在 100 圈之充放電後仍具有 66 %的電容維持率。
進一步探討石墨烯添加量、製程參數、電解液對於電化學特性之影響, 本研究以 10 wt.%、20wt%、35wt%三種不同石墨烯含量分別進行材料分析 與電化學測試,實驗結果得知 35 wt.%雖然穩定性較佳,但其可逆電容量不 高,而 20 wt.%之添加量能得到最佳之可逆電容量且壽命衰退量較小。超臨 界之流體密度會隨著臨界溫度與臨界壓力改變而有所變動,實驗結果表明, 適中的流體密度能擁有最好的電化學特性,於 145bar, 80°C 下可以得到 240 mAh/g 的可逆電容量,並於 100 圈充放電後仍有 77 %的維持率。
從實驗結果得知,超臨界合成之二氧化錫/石墨烯於納離子電池負極中 得到良好的可逆電容量,為了比較與傳統硬碳之間差異性,本研究使用商用 硬碳與二氧化錫/石墨烯做比較,結果顯示,超臨界二氧化錫/石墨烯於 0.02 A/g 充放電中有優於硬碳 230 mAh/g 的可逆電容量,並且於高速下能也能有
i
較優異的電性以及維持率。
為了探討不同電解液在 SnO2/Graphene 負極材料中對於鈉離子電池中
的影響,以及安全性問題,因此分別使用有機溶劑 PC-EC、PC-FEC、EC- PC-FEC 和離子液體 PMP-FSI 三種電解液做為測試,結果指出,在 25°C 下 有機溶劑仍有較好的可逆電容量,然而因電解液不斷形成 SEI 膜而使電容 量衰退明顯。相較於有機溶劑,雖然離子液體在低溫時仍因黏滯性過高而電 容量不高,但在 100 圈充放電後仍然有 100 %的維持率。當操作溫度提升至 60°C 後,有機溶劑因電解液的分解,造成電容量明顯衰退,相反的,離子 液體則因黏滯性降低而明顯提高整體導電性,並在 0.02 A/g 下得到 346 mAh/g 的可逆電容量。
最後進一步探討電容量與理論電容量差異,藉由 Ex-situ XRD、Ex-situ EXAFS 觀察鈉化與去鈉化反應過程,以及 HRTEM 觀察鈉化後之電極。Ex- situ EXAFS 中觀察發現,SnO2 確實有明顯價數偏移,從原本高價數偏移至 低價數,證明確實有轉化反應發生。而從 Ex-situ XRD 中也看到了在鈉化過 程中 Sn 峰值以及鈉錫合金峰值產生,而在去鈉化過程中,Sn 峰值減弱以鈉 錫合金峰值消失,證明合金化反應可逆性。而HRTEM 中發現並非所有 Sn 顆粒皆反應完全,而使同時擁有 Na9Sn4 與最終相 Na15Sn4 存在以及一些中 間相(NaSnO2),因此可能為電容量無法達到理論電容量原因之一。
摘要(英) This study is based on chemical reduction method, using of supercritical carbon dioxide technology to production of tin dioxide and Carbon nanocomposites, and applied as an anode material for the sodium-ion battery. With supercritical high diffusivity, surface tension approaches zero, etc., to improve the dispersibility of tin dioxide on Graphene and observed the electrochemical properties.
The experimental results show that the supercritical prepared of tin dioxide (SnO2-SC) compare the traditional atmospheric synthesis (SnO2-air) has small nanoparticles shows a reversible capacity of 95 mAh/g (at 0.02 A/g). Adding Garphene and Carbon nanotubes as to enhance its electrical conductivity and as the buffer. The carbon nanotubes (SnO2-CNT20wt%-SC) only can up to 149 mA/g. The grapheme (SnO2-G20wt%-SC) shows a clearly higher capacity of 275 mAh/g as same condition, and also enhance the high-rate capacity, it is due to Graphene has high electrical conductivity and surface active position. And with buffer of Graphene can effectively suppress the volume expansion, and uniformly dispersed in supercritical exhibits a capacity retention ratio of approximately 66 % after 100 cycles.
In order to study the added amount of the carbon and the critical temperature (Tp) and critical pressure (Tc) impact electrochemical performance, this study was to use 10 wt.%, 20 wt.%, 35 wt.% different carbon content were analyzed and electrochemical tests.The experimental results that 35 wt.% has better stability, but its reversible capacity were not very high, the amount of 20 wt.% have good reversible capacity and a smaller amount of life decline. Change the Tp and Tc were be relatively close to the supercritical density and it will affect the state of the supercritical fluid. The results shows that high supercritical density have more high solubility, but the diffusion coefficient decreases, the electrochemical results
also show the 145 bar, 80°C has batter capacity and stable cycle performance. iii
Electrolyte were to affect the capacity and stability, in our results show the ionic-liquid has batter cycle stability with a capacity retention of 100% after 100 cycles, but the relatively capacity were small. Although, PC-FEC has the good capacity, but the cycle performance were unstable.
Finally, in order to study the reason of capacity why different to theoretical capacity, we use the Ex-siut EXAFS and Ex-situ XRD to observe the sodiation/desodiation reaction, electrode to charge on 0.01V and analysis by HRTEM. The results shows the conversion reaction was observed. But not form the final Na15Sn4 phase. Therefore, the capacity can’t not be achieved to the theoretical capacity.
關鍵字(中) ★ 超臨界流體
★ 鈉離子電池
★ 二氧化錫
★ 石墨烯
★ 離子液體
關鍵字(英) ★ supercritical fluid
★ sodium battery
★ tin dioxide
★ Graphene
★ ionic liquid
論文目次 目錄 摘要............................................................................................................. i
Abstract ..................................................................................................... iii 致謝............................................................................................................ v
目錄........................................................................................................... vi 表目錄....................................................................................................... ix 圖目錄........................................................................................................ x 第一章 前言.............................................................................................. 1 第二章 背景資料與文獻回顧 ................................................................. 3
2-1 儲能元件....................................................................................3 2-2 鈉離子電池................................................................................6 2-2-1 正極材料......................................................................... 6 2-2-2 負極材料......................................................................... 7 2-2-3 電解液........................................................................... 10 2-3 錫基氧化物..............................................................................24 2-4 碳材複合材料 ........................................................................... 28 2-4-1 石墨烯複合材................................................................ 28 2-4-2 奈米碳管複合材........................................................... 28 2-5 超臨界流體製成......................................................................31 2-5-1 超臨界二氧化碳製備金屬氧化物............................... 32 2-5-2 超臨界二氧化碳之臨界壓力之臨界壓力與臨界溫度 臨界溫度對製備之影響 ......................................................... 32 第三章 實驗步驟與方法 ....................................................................... 38
3-1 二氧化錫之製備......................................................................38
3-2 碳材之準備..............................................................................38 3-2-1 石墨烯(Graphene) ........................................................ 38 3-2-2 奈米碳管(MWCNTs) ................................................... 38
3-3 製備二氧化錫與碳材複合材.................................................. 39
3-3-1 超臨界法合成二氧化錫/石墨烯(奈米碳管)之複合材
.................................................................................................. 39 3-4 材料特性分析..........................................................................39
3-4-1 二氧化錫乘載量分析................................................... 39 3-4-2 碳材微結構分析........................................................... 39 3-4-3 結晶特性之分析........................................................... 40 3-4-4 複合材之微結構分析................................................... 40
3-5 鈕扣電池之製備......................................................................40 3-5-1 將料之製備................................................................... 40 3-5-2 極片之製備................................................................... 40 3-5-3 電解液之製備............................................................... 40 3-5-4 電池之組裝................................................................... 41
3-6 電化學性質測試......................................................................41
3-6-1 計時電位法(chronopotentionmetry, CP)....................... 41
3-6-2 壽命測試....................................................................... 41
3-6-3 循環伏安法(cyclic voltammetry, CV).......................... 41
3-6-4 交流阻抗(electrochemical impedance spectroscopy, EIS)
.................................................................................................. 41 第四章 結果與討論 ............................................................................... 46
4-1 超臨界合成與常壓下之比較.................................................. 46 4-1-1 表面形貌觀察............................................................... 46
4-1-2 材料結構分析............................................................... 46
4-1-3 電化學性質................................................................... 46 4-2 二氧化錫添加碳材之材料與電化學特性.............................. 57 4-2-1 複合材之表面形貌觀察............................................... 57 4-2-2 材料結構分析............................................................... 57 4-2-3 電化學性質................................................................... 57 4-3 石墨烯含量對二氧化錫複合材之電化學影響...................... 70 4-3-1 複合材之表面形貌觀察............................................... 70 4-3-2 材料結構分析............................................................... 70 4-3-3 碳含量分析................................................................... 70 4-3-4 電化學性質................................................................... 70 4-4 臨界壓力與臨界溫度對二氧化鎴/石墨烯的電化學影響...... 80 4-4-1 複合材之表面形貌觀察............................................... 80 4-4-2 材料結構分析............................................................... 80 4-4-3 電化學性質................................................................... 80 4-5 二氧化錫/石墨烯與商用硬碳之比較..................................... 91 4-6 電解液對二氧化錫/石墨烯的電化學影響.............................. 95 4-6-1 電化學性質................................................................... 95 4-7 鈉化反應鑑定.........................................................................110
4-7-1 Ex-situ EXAFS .............................................................110 4-7-2 Ex-situ XRD..................................................................110 4-7-3 HRTEM.........................................................................110
第五章結論.............................................................................................115 參考文獻.................................................................................................117
參考文獻 1. Yang, Z., et al., Electrochemical energy storage for green grid. Chem Rev, 2011. 111(5): p. 3577-3613.
2. Liu, C., et al., Advanced materials for energy storage. Adv Mater, 2010. 22(8): p. E28-62.
3. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
4. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
5. Kim, S.-W., et al., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
6. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
7. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338.
8. Yabuuchi, N. and S. Komaba, Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Science and Technology of Advanced Materials, 2014. 15(4): p. 043501.
9. Yabuuchi, N., et al., Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries. Journal of The Electrochemical Society, 2013. 160(5): p. A3131-A3137.
10. Caballero, A., et al., Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry, 2002. 12(4): p. 1142-1147.
11. Massa, W., O.V. Yakubovich, and O.V. Dimitrova, Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}. Solid State Sciences, 2002. 4(4): p. 495-501.
12. Mohri, M., et al., Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 1989. 26(3–4): p. 545-551.
13. Kanno, R., et al., Carbon as negative electrodes in lithium secondary cells. Journal of Power Sources, 1989. 26(3–4): p. 535-543.
14. Fong, R., U. von Sacken, and J.R. Dahn, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of The Electrochemical Society, 1990. 137(7): p. 2009-2013.
15. Ohzuku, T., Y. Iwakoshi, and K. Sawai, Formation of Lithium‐Graphite
Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 1993. 140(9): p. 2490-2498.
16. Ge, P. and M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ionics, 1988. 28–30, Part 2(0): p. 1172-1175.
17. Doeff, M.M., et al., Electrochemical Insertion of Sodium into Carbon. Journal of The Electrochemical Society, 1993. 140(12): p. L169-L170.
18. Dahbi, M., et al., Negative electrodes for Na-ion batteries. Phys Chem Chem Phys, 2014. 16(29): p. 15007-28.
19. Stevens, D.A. and J.R. Dahn, High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries. Journal of The Electrochemical
Society, 2000. 147(4): p. 1271-1273.
20. Doeff, M.M., J. Cabana, and M. Shirpour, Titanate Anodes for Sodium Ion
Batteries. Journal of Inorganic and Organometallic Polymers and 118
Materials, 2013. 24(1): p. 5-14.
21. Yan, Z., et al., A tightly integrated sodium titanate-carbon composite as
an anode material for rechargeable sodium ion batteries. Journal of
Power Sources, 2015. 274(0): p. 8-14.
22. Senguttuvan, P., et al., Na2Ti3O7: Lowest Voltage Ever Reported Oxide
Insertion Electrode for Sodium Ion Batteries. Chemistry of Materials,
2011. 23(18): p. 4109-4111.
23. Wang, W., et al., Single crystalline Na2Ti3O7rods as an anode material for
sodium-ion batteries. RSC Adv., 2013. 3(4): p. 1041-1044.
24. Woo, S.H., et al., Trigonal Na4Ti5O12 Phase as an Intercalation Host for Rechargeable Batteries. Journal of The Electrochemical Society, 2012.
159(12): p. A2016-A2023.
25. Park, S.I., et al., Electrochemical Properties of NaTi2(PO4)3 Anode for
Rechargeable Aqueous Sodium-Ion Batteries. Journal of The
Electrochemical Society, 2011. 158(10): p. A1067.
26. Wang, Y., et al., A zero-strain layered metal oxide as the negative
electrode for long-life sodium-ion batteries. Nat Commun, 2013. 4.
27. Kim, Y., et al., High-capacity anode materials for sodium-ion batteries.
Chemistry, 2014. 20(38): p. 11980-11992.
28. Xu, Y., et al., Electrochemical Performance of Porous Carbon/Tin
Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Advanced
Energy Materials, 2013. 3(1): p. 128-133.
29. Zhou, X., et al., Sb nanoparticles decorated N-rich carbon nanosheets as
anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chemical Communications, 2014. 50(85): p. 12888-12891.
30. Baggetto, L., et al., Germanium as negative electrode material for sodium-ion batteries. Electrochemistry Communications, 2013. 34(0): p. 41-44.
31. Chevrier, V.L. and G. Ceder, Challenges for Na-ion Negative Electrodes. Journal of The Electrochemical Society, 2011. 158(9): p. A1011-A1014.
32. Idota, Y., et al., Tin-Based Amorphous Oxide: A High-Capacity Lithium-
Ion-Storage Material. Science, 1997. 276(5317): p. 1395-1397.
33. Derrien, G., et al., Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced
Materials, 2007. 19(17): p. 2336-2340.
34. Kim, Y.-J., H. Lee, and H.-J. Sohn, Lithia formation mechanism in tin oxide
anodes for lithium–ion rechargeable batteries. Electrochemistry
Communications, 2009. 11(11): p. 2125-2128.
35. Wang, J.W., et al., Microstructural Evolution of Tin Nanoparticles during
In Situ Sodium Insertion and Extraction. Nano Letters, 2012. 12(11): p.
5897-5902.
36. Yamamoto, T., et al., Thermodynamic studies on Sn–Na alloy in an
intermediate temperature ionic liquid NaFSA–KFSA at 363 K. Journal of
Power Sources, 2013. 237: p. 98-103.
37. Du, Z., R.A. Dunlap, and M.N. Obrovac, Investigation of the reversible
sodiation of Sn foil by ex-situ X-ray diffractometry and Mössbauer effect
spectroscopy. Journal of Alloys and Compounds, 2014. 617: p. 271-276.
38. Dutta, P.K., U.K. Sen, and S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv., 2014.
4(81): p. 43155-43159.
39. Darwiche, A., et al., Facile synthesis and long cycle life of SnSb as negative
electrode material for Na-ion batteries. Electrochemistry
Communications, 2013. 32: p. 18-21.
40. Li, W., et al., Sn4+xP3 @ amorphous Sn-P composites as anodes for
sodium-ion batteries with low cost, high capacity, long life, and superior
rate capability. Adv Mater, 2014. 26(24): p. 4037-42.
41. Datta, M.K., et al., Tin and graphite based nanocomposites: Potential
anode for sodium ion batteries. Journal of Power Sources, 2013. 225: p.
316-322.
42. Lin, Y.M., et al., Sn-Cu nanocomposite anodes for rechargeable sodium-
ion batteries. ACS Appl Mater Interfaces, 2013. 5(17): p. 8273-7.
43. López, M.C., et al., Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries.
Electrochemistry Communications, 2013. 27(0): p. 152-155.
44. Alcántara, R., et al., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chemistry of
Materials, 2002. 14(7): p. 2847-2848.
45. Su, D., et al., Octahedral tin dioxide nanocrystals as high capacity anode
materials for Na-ion batteries. Phys Chem Chem Phys, 2013. 15(30): p.
12543-50.
46. Shimizu, M., H. Usui, and H. Sakaguchi, Electrochemical Na-
insertion/extraction properties of SnO thick-film electrodes prepared by
gas-deposition. Journal of Power Sources, 2014. 248: p. 378-382.
47. Zhou, X., et al., An SbOx/Reduced Graphene Oxide Composite as a High- Rate Anode Material for Sodium-Ion Batteries. The Journal of Physical
Chemistry C, 2014. 118(41): p. 23527-23534.
48. Sun, Q., et al., High capacity Sb2O4 thin film electrodes for rechargeable
sodium battery. Electrochemistry Communications, 2011. 13(12): p.
1462-1464.
49. Hariharan, S., K. Saravanan, and P. Balaya, α-MoO3: A high performance
anode material for sodium-ion batteries. Electrochemistry
Communications, 2013. 31(0): p. 5-9.
50. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable
batteries. Chem Rev, 2004. 104(10): p. 4303-417.
51. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. J.
Mater. Chem. A, 2015. 3(1): p. 22-42. 121
52. Abe, T., et al., Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society, 2004. 151(8): p. A1120-A1123.
53. Abe, T., et al., Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(11): p. A2151-A2154.
54. Okoshi, M., et al., Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. Journal of The Electrochemical Society, 2013. 160(11): p. A2160-A2165.
55. Sagane, F., T. Abe, and Z. Ogumi, Sodium-ion transfer at the interface between ceramic and organic electrolytes. Journal of Power Sources, 2010. 195(21): p. 7466-7470.
56. Mizuno, Y., et al., Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochimica Acta, 2012. 63(0): p. 139-145.
57. Hong, S.Y., et al., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy & Environmental Science, 2013. 6(7): p. 2067.
58. Liu, G., et al., Preparation of porous SnO2thin film with high gasoline sensing performance. Materials Technology, 2014. 29(3): p. 167-171.
59. Ponrouch, A., et al., In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science, 2012. 5(9): p. 8572-8583.
60. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
61. Wongittharom, N., et al., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A, 2014. 2(16): p. 5655.
62. Yamamoto, T., et al., Charge–discharge behavior of tin negative electrode
for a sodium secondary battery using intermediate temperature ionic
liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide. Journal of Power Sources, 2012. 217: p. 479- 484.
63. Egashira, M., et al., Influence of Ionic Liquid Species in Non-Aqueous Electrolyte on Sodium Insertion into Hard Carbon. Electrochemistry, 2012. 80(10): p. 755-758.
64. Yamamoto, T., et al., Improved cyclability of Sn–Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte. Electrochimica Acta, 2014. 135: p. 60-67.
65. Fukunaga, A., et al., A safe and high-rate negative electrode for sodium- ion batteries: Hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K. Journal of Power Sources, 2014. 246: p. 387-391.
66. Han, S., et al., Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes. Advanced Functional Materials, 2005. 15(11): p. 1845-1850.
67. Gu, M., et al., Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett, 2013. 13(11): p. 5203-11.
68. Ding, J., et al., Sodiation vs. lithiation phase transformations in a high rate – high stability SnO2in carbon nanocomposite. J. Mater. Chem. A, 2015. 3(13): p. 7100-7111.
69. Courtney, I.A., W.R. McKinnon, and J.R. Dahn, On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of The Electrochemical Society, 1999. 146(1): p. 59-68.
70. Xu, C., J. Sun, and L. Gao, Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J. Mater. Chem., 2012. 22(3): p. 975-979.
71. Wang, Y., et al., SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochemistry Communications, 2013. 29: p. 8-11.
72. Wang, Y.-X., et al., Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A, 2014. 2(2): p. 529-534.
73. Li, S., et al., SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Adv., 2014. 4(91): p. 50148-50152.
74. Li, Z., et al., High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy, 2015. 15: p. 369-378.
75. Lu, Y.C., et al., Electrochemical properties of tin oxide anodes for sodium- ion batteries. Journal of Power Sources, 2015. 284: p. 287-295.
76. Zhao, X., et al., Core–shell structured SnO2 hollow spheres–polyaniline composite as an anode for sodium-ion batteries. RSC Adv., 2015. 5(40): p. 31465-31471.
77. Xie, X., et al., A comparative investigation on the effects of nitrogen- doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale, 2015. 7(7): p. 3164-72.
78. Zhang, Y., et al., Ultrafine tin oxide on reduced graphene oxide as high- performance anode for sodium-ion batteries. Electrochimica Acta, 2015. 151: p. 8-15.
79. Pei, L., et al., Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 2014. 8(1): p. 184-192.
80. Park, J., et al., Charge–discharge properties of tin dioxide for sodium-ion battery. Materials Research Bulletin, 2014. 58: p. 186-189.
81. Su, D., H.J. Ahn, and G. Wang, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun (Camb), 2013. 49(30): p. 3131-3.
82. Chen, W. and D. Deng, Deflated Carbon Nanospheres Encapsulating Tin Cores Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries. ACS Sustainable Chemistry & Engineering, 2015. 3(1): p. 63-70.
83. Wu, L., et al., A Sn–SnS–C nanocomposite as anode host materials for Na- ion batteries. Journal of Materials Chemistry A, 2013. 1(24): p. 7181.
84. Bresser, D., et al., Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014. 128: p. 163-171.
85. Hu, Y.-S., et al., Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angewandte Chemie International Edition, 2008. 47(9): p. 1645-1649.
86. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
87. Wu, Z.-S., et al., Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano, 2010. 4(6): p. 3187-3194.
88. Gómez, H., et al., Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. Journal of Power Sources, 2011. 196(8): p. 4102-4108.
89. Wang, K., et al., Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta, 2010. 82(1): p. 372-376.
90. Paek, S.-M., E. Yoo, and I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters, 2009. 9(1): p. 72-75.
91. Ebbesen, T.W. and P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358(6383): p. 220-222.
92. Zhu, H.W., et al., Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science, 2002. 296(5569): p. 884-886.
93. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
94. Chaudhary, S., et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007. 7(7): p. 1973-1979.
95. Lin, Y., et al., Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters, 2004. 4(2): p. 191-195.
96. Wang, Q., Z.H. Wen, and J.H. Li, A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode. Advanced Functional Materials, 2006. 16(16): p. 2141-2146.
97. Kim, S.-W., et al., Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chemical Communications, 2010. 46(39): p. 7409-7411.
98. Jia, X., et al., Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chemical Communications, 2011. 47(34): p. 9669-9671.
99. Reddy, A.L.M., et al., Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Letters, 2009. 9(3): p. 1002-1006.
100. Wu, F.D. and Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(18): p. 6636-6641.
101. Kerler, B. and A. Martin, Partial oxidation of alkanes to oxygenates in supercritical carbon dioxide. Catalysis Today, 2000. 61(1-4): p. 9-17.
102. Schneider, G.M., Physicochemical aspects of fluid extraction. Fluid Phase Equilibria, 1983. 10(2–3): p. 141-157.
103. Devaraju, M.K., et al., Supercritical fluid methods for synthesizing
cathode materials towards lithium ion battery applications. RSC 126
Advances, 2014. 4(52): p. 27452.
104. Kanamura, K., et al., Preparation and Electrochemical Characterization
of LiCoO2 Particles Prepared by Supercritical Water Synthesis.
Electrochemical and Solid-State Letters, 2000. 3(6): p. 256-258.
105. Darr, J.A. and M. Poliakoff, New Directions in Inorganic and Metal- Organic Coordination Chemistry in Supercritical Fluids. Chemical
Reviews, 1999. 99(2): p. 495-542.
106. Zhao, Q. and E.T. Samulski, A comparative study of poly(methyl
methacrylate) and polystyrene/clay nanocomposites prepared in
supercritical carbon dioxide. Polymer, 2006. 47(2): p. 663-671.
107. Komoto, I. and S. Kobayashi, Lewis Acid Catalysis in Supercritical Carbon Dioxide. Use of Poly(ethylene glycol) Derivatives and Perfluoroalkylbenzenes as Surfactant Molecules Which Enable Efficient Catalysis in ScCO2. The Journal of Organic Chemistry, 2004. 69(3): p.
680-688.
108. Kim, W.-J., et al., Selective caffeine removal from green tea using
supercritical carbon dioxide extraction. Journal of Food Engineering,
2008. 89(3): p. 303-309.
109. Lee, M.-T., et al., Improved supercapacitor performance of MnO2-
graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid. Journal of Materials Chemistry A, 2013. 1(10): p. 3395-3405.
110. Li, J., et al., Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2. J Colloid Interface Sci, 2007. 315(1): p. 230-6.
111. Zhuo, L., et al., CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(12): p. 3954.
112. DeSimone, J.M., Practical Approaches to Green Solvents. Science, 2002. 297(5582): p. 799-803.
113. McHugh, M.A. and V.J. Krukonis, Supercritical fluid extraction: principles and practice. 2nd ed ed. 1994, Stoneham: Butterworth-Heinemann. 512.
114. Ertel, H. and H. Tiltscher, Optical probe for on-line spectroscopic measurements in the near-critical region. Appl Opt, 1992. 31(33): p. 6972-3.
115. An, G., et al., SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007. 18(43): p. 435707.
116. Jiang, Z., et al., One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes. Applied Surface Science, 2014. 317: p. 486-489.
117. Wang, L., et al., Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium-Storage Performance. Chemistry – A European Journal, 2014. 20(15): p. 4308- 4315.
118. Ellis, L.D., T.D. Hatchard, and M.N. Obrovac, Reversible Insertion of Sodium in Tin. Journal of the Electrochemical Society, 2012. 159(11): p. A1801-A1805.
指導教授 張仍奎(Jeng-kuei Chang) 審核日期 2015-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明