參考文獻 |
1. Yang, Z., et al., Electrochemical energy storage for green grid. Chem Rev, 2011. 111(5): p. 3577-3613.
2. Liu, C., et al., Advanced materials for energy storage. Adv Mater, 2010. 22(8): p. E28-62.
3. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
4. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011. 4(9): p. 3243.
5. Kim, S.-W., et al., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
6. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
7. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338.
8. Yabuuchi, N. and S. Komaba, Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Science and Technology of Advanced Materials, 2014. 15(4): p. 043501.
9. Yabuuchi, N., et al., Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries. Journal of The Electrochemical Society, 2013. 160(5): p. A3131-A3137.
10. Caballero, A., et al., Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells. Journal of Materials Chemistry, 2002. 12(4): p. 1142-1147.
11. Massa, W., O.V. Yakubovich, and O.V. Dimitrova, Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F[PO4]2}. Solid State Sciences, 2002. 4(4): p. 495-501.
12. Mohri, M., et al., Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 1989. 26(3–4): p. 545-551.
13. Kanno, R., et al., Carbon as negative electrodes in lithium secondary cells. Journal of Power Sources, 1989. 26(3–4): p. 535-543.
14. Fong, R., U. von Sacken, and J.R. Dahn, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of The Electrochemical Society, 1990. 137(7): p. 2009-2013.
15. Ohzuku, T., Y. Iwakoshi, and K. Sawai, Formation of Lithium‐Graphite
Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell. Journal of The Electrochemical Society, 1993. 140(9): p. 2490-2498.
16. Ge, P. and M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ionics, 1988. 28–30, Part 2(0): p. 1172-1175.
17. Doeff, M.M., et al., Electrochemical Insertion of Sodium into Carbon. Journal of The Electrochemical Society, 1993. 140(12): p. L169-L170.
18. Dahbi, M., et al., Negative electrodes for Na-ion batteries. Phys Chem Chem Phys, 2014. 16(29): p. 15007-28.
19. Stevens, D.A. and J.R. Dahn, High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries. Journal of The Electrochemical
Society, 2000. 147(4): p. 1271-1273.
20. Doeff, M.M., J. Cabana, and M. Shirpour, Titanate Anodes for Sodium Ion
Batteries. Journal of Inorganic and Organometallic Polymers and 118
Materials, 2013. 24(1): p. 5-14.
21. Yan, Z., et al., A tightly integrated sodium titanate-carbon composite as
an anode material for rechargeable sodium ion batteries. Journal of
Power Sources, 2015. 274(0): p. 8-14.
22. Senguttuvan, P., et al., Na2Ti3O7: Lowest Voltage Ever Reported Oxide
Insertion Electrode for Sodium Ion Batteries. Chemistry of Materials,
2011. 23(18): p. 4109-4111.
23. Wang, W., et al., Single crystalline Na2Ti3O7rods as an anode material for
sodium-ion batteries. RSC Adv., 2013. 3(4): p. 1041-1044.
24. Woo, S.H., et al., Trigonal Na4Ti5O12 Phase as an Intercalation Host for Rechargeable Batteries. Journal of The Electrochemical Society, 2012.
159(12): p. A2016-A2023.
25. Park, S.I., et al., Electrochemical Properties of NaTi2(PO4)3 Anode for
Rechargeable Aqueous Sodium-Ion Batteries. Journal of The
Electrochemical Society, 2011. 158(10): p. A1067.
26. Wang, Y., et al., A zero-strain layered metal oxide as the negative
electrode for long-life sodium-ion batteries. Nat Commun, 2013. 4.
27. Kim, Y., et al., High-capacity anode materials for sodium-ion batteries.
Chemistry, 2014. 20(38): p. 11980-11992.
28. Xu, Y., et al., Electrochemical Performance of Porous Carbon/Tin
Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Advanced
Energy Materials, 2013. 3(1): p. 128-133.
29. Zhou, X., et al., Sb nanoparticles decorated N-rich carbon nanosheets as
anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chemical Communications, 2014. 50(85): p. 12888-12891.
30. Baggetto, L., et al., Germanium as negative electrode material for sodium-ion batteries. Electrochemistry Communications, 2013. 34(0): p. 41-44.
31. Chevrier, V.L. and G. Ceder, Challenges for Na-ion Negative Electrodes. Journal of The Electrochemical Society, 2011. 158(9): p. A1011-A1014.
32. Idota, Y., et al., Tin-Based Amorphous Oxide: A High-Capacity Lithium-
Ion-Storage Material. Science, 1997. 276(5317): p. 1395-1397.
33. Derrien, G., et al., Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced
Materials, 2007. 19(17): p. 2336-2340.
34. Kim, Y.-J., H. Lee, and H.-J. Sohn, Lithia formation mechanism in tin oxide
anodes for lithium–ion rechargeable batteries. Electrochemistry
Communications, 2009. 11(11): p. 2125-2128.
35. Wang, J.W., et al., Microstructural Evolution of Tin Nanoparticles during
In Situ Sodium Insertion and Extraction. Nano Letters, 2012. 12(11): p.
5897-5902.
36. Yamamoto, T., et al., Thermodynamic studies on Sn–Na alloy in an
intermediate temperature ionic liquid NaFSA–KFSA at 363 K. Journal of
Power Sources, 2013. 237: p. 98-103.
37. Du, Z., R.A. Dunlap, and M.N. Obrovac, Investigation of the reversible
sodiation of Sn foil by ex-situ X-ray diffractometry and Mössbauer effect
spectroscopy. Journal of Alloys and Compounds, 2014. 617: p. 271-276.
38. Dutta, P.K., U.K. Sen, and S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv., 2014.
4(81): p. 43155-43159.
39. Darwiche, A., et al., Facile synthesis and long cycle life of SnSb as negative
electrode material for Na-ion batteries. Electrochemistry
Communications, 2013. 32: p. 18-21.
40. Li, W., et al., Sn4+xP3 @ amorphous Sn-P composites as anodes for
sodium-ion batteries with low cost, high capacity, long life, and superior
rate capability. Adv Mater, 2014. 26(24): p. 4037-42.
41. Datta, M.K., et al., Tin and graphite based nanocomposites: Potential
anode for sodium ion batteries. Journal of Power Sources, 2013. 225: p.
316-322.
42. Lin, Y.M., et al., Sn-Cu nanocomposite anodes for rechargeable sodium-
ion batteries. ACS Appl Mater Interfaces, 2013. 5(17): p. 8273-7.
43. López, M.C., et al., Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries.
Electrochemistry Communications, 2013. 27(0): p. 152-155.
44. Alcántara, R., et al., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chemistry of
Materials, 2002. 14(7): p. 2847-2848.
45. Su, D., et al., Octahedral tin dioxide nanocrystals as high capacity anode
materials for Na-ion batteries. Phys Chem Chem Phys, 2013. 15(30): p.
12543-50.
46. Shimizu, M., H. Usui, and H. Sakaguchi, Electrochemical Na-
insertion/extraction properties of SnO thick-film electrodes prepared by
gas-deposition. Journal of Power Sources, 2014. 248: p. 378-382.
47. Zhou, X., et al., An SbOx/Reduced Graphene Oxide Composite as a High- Rate Anode Material for Sodium-Ion Batteries. The Journal of Physical
Chemistry C, 2014. 118(41): p. 23527-23534.
48. Sun, Q., et al., High capacity Sb2O4 thin film electrodes for rechargeable
sodium battery. Electrochemistry Communications, 2011. 13(12): p.
1462-1464.
49. Hariharan, S., K. Saravanan, and P. Balaya, α-MoO3: A high performance
anode material for sodium-ion batteries. Electrochemistry
Communications, 2013. 31(0): p. 5-9.
50. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable
batteries. Chem Rev, 2004. 104(10): p. 4303-417.
51. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. J.
Mater. Chem. A, 2015. 3(1): p. 22-42. 121
52. Abe, T., et al., Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. Journal of The Electrochemical Society, 2004. 151(8): p. A1120-A1123.
53. Abe, T., et al., Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(11): p. A2151-A2154.
54. Okoshi, M., et al., Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents. Journal of The Electrochemical Society, 2013. 160(11): p. A2160-A2165.
55. Sagane, F., T. Abe, and Z. Ogumi, Sodium-ion transfer at the interface between ceramic and organic electrolytes. Journal of Power Sources, 2010. 195(21): p. 7466-7470.
56. Mizuno, Y., et al., Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochimica Acta, 2012. 63(0): p. 139-145.
57. Hong, S.Y., et al., Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy & Environmental Science, 2013. 6(7): p. 2067.
58. Liu, G., et al., Preparation of porous SnO2thin film with high gasoline sensing performance. Materials Technology, 2014. 29(3): p. 167-171.
59. Ponrouch, A., et al., In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science, 2012. 5(9): p. 8572-8583.
60. MacFarlane, D.R., et al., Energy applications of ionic liquids. Energy & Environmental Science, 2014. 7(1): p. 232-250.
61. Wongittharom, N., et al., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. Journal of Materials Chemistry A, 2014. 2(16): p. 5655.
62. Yamamoto, T., et al., Charge–discharge behavior of tin negative electrode
for a sodium secondary battery using intermediate temperature ionic
liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide. Journal of Power Sources, 2012. 217: p. 479- 484.
63. Egashira, M., et al., Influence of Ionic Liquid Species in Non-Aqueous Electrolyte on Sodium Insertion into Hard Carbon. Electrochemistry, 2012. 80(10): p. 755-758.
64. Yamamoto, T., et al., Improved cyclability of Sn–Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte. Electrochimica Acta, 2014. 135: p. 60-67.
65. Fukunaga, A., et al., A safe and high-rate negative electrode for sodium- ion batteries: Hard carbon in NaFSA-C1C3pyrFSA ionic liquid at 363 K. Journal of Power Sources, 2014. 246: p. 387-391.
66. Han, S., et al., Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-Ion Battery Anodes. Advanced Functional Materials, 2005. 15(11): p. 1845-1850.
67. Gu, M., et al., Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett, 2013. 13(11): p. 5203-11.
68. Ding, J., et al., Sodiation vs. lithiation phase transformations in a high rate – high stability SnO2in carbon nanocomposite. J. Mater. Chem. A, 2015. 3(13): p. 7100-7111.
69. Courtney, I.A., W.R. McKinnon, and J.R. Dahn, On the Aggregation of Tin in SnO Composite Glasses Caused by the Reversible Reaction with Lithium. Journal of The Electrochemical Society, 1999. 146(1): p. 59-68.
70. Xu, C., J. Sun, and L. Gao, Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J. Mater. Chem., 2012. 22(3): p. 975-979.
71. Wang, Y., et al., SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochemistry Communications, 2013. 29: p. 8-11.
72. Wang, Y.-X., et al., Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A, 2014. 2(2): p. 529-534.
73. Li, S., et al., SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Adv., 2014. 4(91): p. 50148-50152.
74. Li, Z., et al., High rate SnO2–Graphene Dual Aerogel anodes and their kinetics of lithiation and sodiation. Nano Energy, 2015. 15: p. 369-378.
75. Lu, Y.C., et al., Electrochemical properties of tin oxide anodes for sodium- ion batteries. Journal of Power Sources, 2015. 284: p. 287-295.
76. Zhao, X., et al., Core–shell structured SnO2 hollow spheres–polyaniline composite as an anode for sodium-ion batteries. RSC Adv., 2015. 5(40): p. 31465-31471.
77. Xie, X., et al., A comparative investigation on the effects of nitrogen- doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale, 2015. 7(7): p. 3164-72.
78. Zhang, Y., et al., Ultrafine tin oxide on reduced graphene oxide as high- performance anode for sodium-ion batteries. Electrochimica Acta, 2015. 151: p. 8-15.
79. Pei, L., et al., Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 2014. 8(1): p. 184-192.
80. Park, J., et al., Charge–discharge properties of tin dioxide for sodium-ion battery. Materials Research Bulletin, 2014. 58: p. 186-189.
81. Su, D., H.J. Ahn, and G. Wang, SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun (Camb), 2013. 49(30): p. 3131-3.
82. Chen, W. and D. Deng, Deflated Carbon Nanospheres Encapsulating Tin Cores Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries. ACS Sustainable Chemistry & Engineering, 2015. 3(1): p. 63-70.
83. Wu, L., et al., A Sn–SnS–C nanocomposite as anode host materials for Na- ion batteries. Journal of Materials Chemistry A, 2013. 1(24): p. 7181.
84. Bresser, D., et al., Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014. 128: p. 163-171.
85. Hu, Y.-S., et al., Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angewandte Chemie International Edition, 2008. 47(9): p. 1645-1649.
86. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
87. Wu, Z.-S., et al., Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano, 2010. 4(6): p. 3187-3194.
88. Gómez, H., et al., Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. Journal of Power Sources, 2011. 196(8): p. 4102-4108.
89. Wang, K., et al., Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta, 2010. 82(1): p. 372-376.
90. Paek, S.-M., E. Yoo, and I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters, 2009. 9(1): p. 72-75.
91. Ebbesen, T.W. and P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358(6383): p. 220-222.
92. Zhu, H.W., et al., Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. Science, 2002. 296(5569): p. 884-886.
93. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
94. Chaudhary, S., et al., Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007. 7(7): p. 1973-1979.
95. Lin, Y., et al., Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters, 2004. 4(2): p. 191-195.
96. Wang, Q., Z.H. Wen, and J.H. Li, A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode. Advanced Functional Materials, 2006. 16(16): p. 2141-2146.
97. Kim, S.-W., et al., Carbon nanotube-amorphous FePO4 core-shell nanowires as cathode material for Li ion batteries. Chemical Communications, 2010. 46(39): p. 7409-7411.
98. Jia, X., et al., Direct growth of flexible LiMn2O4/CNT lithium-ion cathodes. Chemical Communications, 2011. 47(34): p. 9669-9671.
99. Reddy, A.L.M., et al., Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries. Nano Letters, 2009. 9(3): p. 1002-1006.
100. Wu, F.D. and Y. Wang, Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(18): p. 6636-6641.
101. Kerler, B. and A. Martin, Partial oxidation of alkanes to oxygenates in supercritical carbon dioxide. Catalysis Today, 2000. 61(1-4): p. 9-17.
102. Schneider, G.M., Physicochemical aspects of fluid extraction. Fluid Phase Equilibria, 1983. 10(2–3): p. 141-157.
103. Devaraju, M.K., et al., Supercritical fluid methods for synthesizing
cathode materials towards lithium ion battery applications. RSC 126
Advances, 2014. 4(52): p. 27452.
104. Kanamura, K., et al., Preparation and Electrochemical Characterization
of LiCoO2 Particles Prepared by Supercritical Water Synthesis.
Electrochemical and Solid-State Letters, 2000. 3(6): p. 256-258.
105. Darr, J.A. and M. Poliakoff, New Directions in Inorganic and Metal- Organic Coordination Chemistry in Supercritical Fluids. Chemical
Reviews, 1999. 99(2): p. 495-542.
106. Zhao, Q. and E.T. Samulski, A comparative study of poly(methyl
methacrylate) and polystyrene/clay nanocomposites prepared in
supercritical carbon dioxide. Polymer, 2006. 47(2): p. 663-671.
107. Komoto, I. and S. Kobayashi, Lewis Acid Catalysis in Supercritical Carbon Dioxide. Use of Poly(ethylene glycol) Derivatives and Perfluoroalkylbenzenes as Surfactant Molecules Which Enable Efficient Catalysis in ScCO2. The Journal of Organic Chemistry, 2004. 69(3): p.
680-688.
108. Kim, W.-J., et al., Selective caffeine removal from green tea using
supercritical carbon dioxide extraction. Journal of Food Engineering,
2008. 89(3): p. 303-309.
109. Lee, M.-T., et al., Improved supercapacitor performance of MnO2-
graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid. Journal of Materials Chemistry A, 2013. 1(10): p. 3395-3405.
110. Li, J., et al., Synthesis of biomorphological mesoporous TiO2 templated by mimicking bamboo membrane in supercritical CO2. J Colloid Interface Sci, 2007. 315(1): p. 230-6.
111. Zhuo, L., et al., CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013. 1(12): p. 3954.
112. DeSimone, J.M., Practical Approaches to Green Solvents. Science, 2002. 297(5582): p. 799-803.
113. McHugh, M.A. and V.J. Krukonis, Supercritical fluid extraction: principles and practice. 2nd ed ed. 1994, Stoneham: Butterworth-Heinemann. 512.
114. Ertel, H. and H. Tiltscher, Optical probe for on-line spectroscopic measurements in the near-critical region. Appl Opt, 1992. 31(33): p. 6972-3.
115. An, G., et al., SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery. Nanotechnology, 2007. 18(43): p. 435707.
116. Jiang, Z., et al., One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes. Applied Surface Science, 2014. 317: p. 486-489.
117. Wang, L., et al., Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium-Storage Performance. Chemistry – A European Journal, 2014. 20(15): p. 4308- 4315.
118. Ellis, L.D., T.D. Hatchard, and M.N. Obrovac, Reversible Insertion of Sodium in Tin. Journal of the Electrochemical Society, 2012. 159(11): p. A1801-A1805. |