參考文獻 |
1. Midilli, A. and I. Dincer, Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. International Journal of Hydrogen Energy, 2008. 33(16): p. 4209-4222.
2. Ahmed, N.A., M. Miyatake, and A.K. Al-Othman, Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Conversion and Management, 2008. 49(10): p. 2711-2719.
3. Chourabi, H., et al., Understanding Smart Cities: An Integrative Framework. 2012: p. 2289-2297.
4. Kundu, D., et al., The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie International Edition, 2015. 54(11): p. 3431-3448.
5. Kim, Y., et al., High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry - A European Journal, 2014. 20(38): p. 11980-11992.
6. Barker, J., M.Y. Saidi, and J.L. Swoyer, A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO[sub 4]F. Electrochemical and Solid-State Letters, 2003. 6(1): p. A1.
7. Alcántara, R., et al., Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. Electrochemical and Solid-State Letters, 2005. 8(4): p. A222.
8. Stevens, D.A. and J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. Journal of the Electrochemical Society, 2000. 147(4): p. 1271-1273.
9. Suresh Babu, R. and M. Pyo, Hard Carbon and Carbon Nanotube Composites for the Improvement of Low-Voltage Performance in Na Ion Batteries. Journal of the Electrochemical Society, 2014. 161(6): p. A1045-A1050.
10. Yu, D.Y.W., et al., High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nature Communications, 2013. 4.
11. Whittingham, M.S., Materials challenges facing electrical energy storage. Mrs Bulletin, 2008. 33(4): p. 411-419.
12. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
13. R. Ko¨tz, M.C., Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 2483–2498.
14. Brodd, M.W.a.R.J., What are batteries, fuel cells, and supercapacitors. Chemical Reviews. Chemical Reviews, 2004. 104: p. 4245-4269.
15. Recknagel, S., H. Radant, and R. Kohlmeyer, Survey of mercury, cadmium and lead content of household batteries. Waste Management, 2014. 34(1): p. 156-161.
16. Miranda, D., C.M. Costa, and S. Lanceros-Mendez, Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations. Journal of Electroanalytical Chemistry, 2015. 739: p. 97-110.
17. Milne, A.D. and C.A. Brousseau, Effects of battery type and age on performance of rechargeable laryngoscopes. Journal of Anesthesia, 2013. 27(5): p. 781-784.
18. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
19. Manthiram, A., Materials Challenges and Opportunities of Lithium Ion Batteries (vol 2, pg 176, 2011). Journal of Physical Chemistry Letters, 2011. 2(5): p. 373-373.
20. Yuan, L.-X., et al., Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ. Sci., 2011. 4(2): p. 269-284.
21. Aurbach, D., The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. Journal of The Electrochemical Society, 1996. 143(11): p. 3525.
22. Whittingham, M.S., History, Evolution, and Future Status of Energy Storage. Proceedings of the Ieee, 2012. 100: p. 1518-1534.
23. Johnson, B.A. and R.E. White, Characterization of commercially available lithium-ion batteries. Journal of Power Sources, 1998. 70(1): p. 48-54.
24. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
25. X. Yuan, H.L., J, Zhang, Lithium-Ion Batteries: Advanced Materials and Technologies. Taylor & Francis, 2011.
26. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
27. M. Yoshio, R.J.B., A. Kozawa, Lithium-Ion Batteries: Science and Technologies. Springer-Verlag, 2009.
28. Chen, J., C. Buhrmester, and J.R. Dahn, Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2005. 8(1): p. A59.
29. Arora, P., Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. Journal of The Electrochemical Society, 1998. 145(10): p. 3647.
30. Kim, S.-W., et al., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
31. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338.
32. Veronica Palomares, e.a., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5: p. 5884-5901.
33. Palomares, V., et al., Update on Na-based battery materials. A growing research path. Energy & Environmental Science, 2013. 6(8): p. 2312-2337.
34. Palacín, M.R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565.
35. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
36. Doeff, M.M., et al., ELECTROCHEMICAL INSERTION OF SODIUM INTO CARBON. Journal of the Electrochemical Society, 1993. 140(12): p. L169-L170.
37. Alcantara, R., J.M.J. Mateos, and J.L. Tirado, Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 degrees C. Journal of the Electrochemical Society, 2002. 149(2): p. A201-A205.
38. Zhecheva, E., et al., EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002. 40(13): p. 2301-2306.
39. Stevens, D.A. and J.R. Dahn, The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of The Electrochemical Society, 2001. 148(8): p. A803.
40. Biarritz and France, Abstract 228, The International Meeting on Lithium Batteries,. 2006: p. 18–23.
41. http://panasonic.co.jp/corp/news/official.data/data.dir/jn091225-1/jn091225-1.html. June 28, 2011.
42. Yabuuchi, N., et al., Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface-Stabilization Mechanism in Aprotic Solvent. ChemElectroChem, 2014. 1(3): p. 580-589.
43. Zhu, Y., et al., High rate capability and superior cycle stability of a flower-like Sb2S3anode for high-capacity sodium ion batteries. Nanoscale, 2015. 7(7): p. 3309-3315.
44. Kim, I.T., E. Allcorn, and A. Manthiram, High-performance FeSb–TiC–C nanocomposite anodes for sodium-ion batteries. Physical Chemistry Chemical Physics, 2014. 16(25): p. 12884.
45. Nithya, C. and S. Gopukumar, rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. Journal of Materials Chemistry A, 2014. 2(27): p. 10516.
46. Cabana, J., et al., Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 2010. 22(35): p. E170-E192.
47. Li, J., et al., Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2008. 155(12): p. A975.
48. Taberna, P.L., et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 2006. 5(7): p. 567-573.
49. Du, Y., et al., A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun, 2012. 3: p. 1177.
50. Ko, Y.N., et al., Preparation of Yolk-Shell and Filled Co9S8 Microspheres and Comparison of their Electrochemical Properties. Chemistry-an Asian Journal, 2014. 9(2): p. 572-576.
51. Ni, S., X. Yang, and T. Li, Fabrication of a porous NiS/Ni nanostructured electrodevia a dry thermal sulfuration method and its application in a lithium ion battery. Journal of Materials Chemistry, 2012. 22(6): p. 2395-2397.
52. Ruan, H., et al., Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2014. 588: p. 357-360.
53. Zakaznova-Herzog, V.P., et al., High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surface Science, 2006. 600(2): p. 348-356.
54. Yu, D.Y.W., et al., High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013. 4.
55. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(1): p. 22-42.
56. Freunberger, S.A., et al., The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angewandte Chemie International Edition, 2011. 50(37): p. 8609-8613.
57. Ohta, A., et al., RELATIONSHIP BETWEEN CARBONACEOUS MATERIALS AND ELECTROLYTE IN SECONDARY LITHIUM-ION BATTERIES. Journal of Power Sources, 1995. 54(1): p. 6-10.
58. Kamath, G., et al., In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications. The Journal of Physical Chemistry C, 2014. 118(25): p. 13406-13416.
59. Komaba, S., et al., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Advanced Functional Materials, 2011. 21(20): p. 3859-3867.
60. Shiddiky, M.J.A. and A.A.J. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosensors and Bioelectronics, 2011. 26(5): p. 1775-1787.
61. Xing Zhao1, Q.-C.Z., Shou-Dong Xu, Ya-Xi Xu, Yue-Li Shi, Xin-Xi Zhang, A New Insight into the Content Effect of Fluoroethylene Carbonate as a Film Forming Additive for Lithium-Ion Batteries. Int. J. Electrochem. Sci, 2015. 10: p. 2515 - 2534.
62. Liu, G., et al., Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells. Journal of The Electrochemical Society, 2007. 154(12): p. A1129.
63. Li, J., et al., Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of The Electrochemical Society, 2008. 155(3): p. A234.
64. Chou, S.-L., et al., Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20347-20359.
65. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
66. Morozov, S.V., et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008. 100(1).
67. Machado, B.F. and P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol., 2012. 2(1): p. 54-75.
68. Abalyaeva, V.V., et al., Electrosynthesis of a composite based on graphene oxide nanosheets and polyaniline with hexachloroiridate anion. Russian Chemical Bulletin, 2014. 63(3): p. 627-634.
69. Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010. 39(8): p. 3157.
70. Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
71. Kumar, M. and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 2010. 10(6): p. 3739-3758.
72. Zhou, X., et al., Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochimica Acta, 2013. 108: p. 17-21.
73. Alemi, A., et al., Co-reduction synthesis of new LnxSb2−xS3 (Ln: Nd3+, Lu3+, Ho3+) nanomaterials and investigation of their physical properties. Physica B: Condensed Matter, 2011. 406(14): p. 2801-2806.
74. Yin, X., et al., Synthesis and luminescent properties of uniform monodisperse YBO3:Eu3+/Tb3+ microspheres. Crystengcomm, 2014. 16(25): p. 5543-5550.
75. Komaba, S., et al., Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Applied Materials & Interfaces, 2011. 3(11): p. 4165-4168.
76. Li, L., et al., SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014. 7(10): p. 1466-1476.
|