參考文獻 |
References
[1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State
Physics and Electronics,” Phys. Rev. Lett., Vol. 58, No. 20, pp.
2059–2062, May 1987
[2] S. John, “Strong localization of photons in certain disordered
dielectric superlattices,” Phys. Rev. Lett., Vol. 58, No. 23 , pp. 2486–2489,
June 1987
[3] V. Kuzmiak, “Localized defect modes in a two-dimensional triangular
photonic crystal,” Phys. Rev. B, Vol. 57, No. 24, June 1998
[4] E. R. Brown, C. D. Parker, E. Yablonovitch, “Radiation properties of a
planar antenna on a photonic-crystal substrate,” J. Opt. Soc. Am. B, Vol.
10, No. 2, February 1993
[5] H. Y. Ryu, J. K. Hwang, Y. H. Lee, “Effect of size nonuniformities on
the band gap of two-dimensional photonic crystals,” Phys. Rev. B, Vol. 59,
No. 8, February 1999
[6] M. Qiu, S. He, “Large complete band gap in two-dimensional
photonic crystals with elliptic air holes,” Phys. Rev. B, Vol. 60, No. 15,
October 1999
87
[7] M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos,
E. P. Ippen, H. I. Smith, “A three-dimensional optical photonic crystal
with designed point defects,” Nature, Vol. 429, pp. 538–542, June 2004
[8] Fleming, J. G., Lin. S. Y., “Three-dimensional photonic crystal with a
stop band from 1.35 to 1.95 m,” Opt. Lett., Vol. 24, No. 1, pp. 49–51,
January 1999
[9] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, “Full
Three-Dimensional Photonic Bandgap Crystals at Near-Infrared
Wavelengths” , Science, Vol. 289, pp. 604–606, July 2000
[10] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, A. J.
Turberfield, “Fabrication of photonic crystals for the visible spectrum by
holographic lithography,” Nature, Vol. 404, pp. 53–56, March 2000
[11] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, D. J. Norris, “On-chip natural
assembly of silicon photonic bandgap crystals,” Nature, Vol. 414, pp.
289–293, November 2001
[12] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.
Leonard, C. Lopez, F. Meseguer, H. Miguez., J. P. Mondia, G. A. Ozin,
O. Toader, H. M. van Driel, “Large scale synthesis of a silicon photonic
crystal with a complete three-dimensional bandgap near 1.5
88
micrometers,” Nature, Vol. 405, pp. 437–440, May 2000
[13] C. C. Cheng, A. Scherer, “Fabrication of photonic band-gap
crystals,” J. Vac. Sci. Technol. B, Vol. 13, pp. 2696–2700 November
1995
[14] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N.
Shinya, Y. Aoyagi, “Three-dimensional photonic crystals for optical
wavelengths assembled by micromanipulation,” Appl. Phys. Lett., Vol. 81,
No. 17, October 2002
[15] S. R. Kennedy, M. J. Brett, “Fabrication of Tetragonal Square Spiral
Photonic Crystals,” Nano Lett., Vol. 2, No. 1, pp. 59–62, 2002
[16] E. Kuramochi1, M. Notomi1, T. Kawashima, J. Takahashi,
C. Takahashi, T. Tamamura1, S. Kawakami, “A new fabrication
technique for photonic crystals: Nanolithography combined with
alternating-layer deposition,” Opt. Quant. Elec., Vol 34, No. 1–3, pp.
53–61, January 2002
[17] T. Sato, K. Miura1, N. Ishino1, Y. Ohtera1, T. Tamamura,
S. Kawakami, “Photonic crystals for the visible range fabricated by
89
autocloning technique and their application,” Opt. Quant. Elec.,Vol. 34,
No. 1–3, pp. 63–70, January 2002
[18] http://ab-initio.mit.edu/photons/
[19] H. Hirayama, T. Hamano, Y. Aoyagi, “Novel surface emitting laser
diode using photonic band-gap crystal cavity,” Appl. Phys. Lett., Vol. 69,
pp. 791–793, August 1996.
[20] J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals:
Putting a new twist on light,” Nature, Vol. 386, pp. 143–149 , March
1997
[21] J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, “All-silica
single-mode optical fiber with photonic crystal cladding,” Opt. Lett., Vol.
21, No. 19, pp. 1547–1549, October 1996
[22] T. F. Krauss, R. M. De La Rue, S. Brand, “Two-dimensional
photonic-bandgap structures operating at near-infrared wavelengths,”
Nature, Vol. 383, pp.699–702, 1996
[23] D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La
Rue, V. Bardinal, R. Houdré, U. Oesterle, D. Cassagne, C. Jouanin,
“Quantitative measurement of transmission, reflection, and diffraction of
twodimensional photonic band gap structures at near-infrared
90
wavelengths,” Phys. Rev. Lett., Vol. 79, No. 21, pp. 4147–4150,
November 1997
[24] S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, & J. D.
Joannopoulos, “Experimental demonstration of guiding and bending of
electromagnetic waves in a photonic crystal,” Science, Vol. 282, No.
5387, pp. 274–276, October 1998
[25] T. Baba, N. Fukaya, & J. Yonekura, “Observation of light
propagation in photonic crystal optical waveguides with bends,” Electron.
Lett., Vol. 35, pp. 654–655, 1999
[26] M. Notomi, “Extremely large group-velocity dispersion of
line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett., Vol.
87, No. 25, pp. 253902-1–4, December 2001
[27] Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K.
Inoue, “Fabrication and characterization of different types of
two-dimensional AlGaAs photonic crystal slabs,” J. Appl. Phys., Vol. 91,
No. 3, pp. 922–929, February 2002
[28] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.
Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode
laser,” Science, Vol. 284, pp. 1819–1821, June 1999
91
[29] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki,
“Polarization mode control of twodimensional photonic crystal laser by
unit cell structure design,” Science, Vol. 293, pp. 1123–1125, August
2001
[30] D. Labilloy, et al., “Demonstration of cavity mode between
two-dimensional photonic-crystal mirrors,” Electron. Lett., Vol. 33, pp.
1978–1980, 1997
[31] S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons
by a single defect in a photonic bandgap structure,” Nature, Vol. 407, pp.
608–610, October 2000
[32] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K.
Sakoda, N. Shinya, Y. Aoyagi, “Microassembly of semiconductor
three-dimensional photonic crystals,” nature materials, Vol. 2, February
2003
[33] Gérard Tayeb, Boris Gralak, Stefan Enoch, “Structural Colors
in Natureand Butterfly-Wing Modeling,” Optics and Photonics News, pp.
38–49, February 2003
[34] L. P. Biró, Z. Bálint, K. Kertész, Z. Vértesy, G. I. Márk,1 Z. E.
Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P. Vigneron, “Role
92
of photonic-crystal-type structures in the thermal regulation of a Lycaenid
butterfly sister species pair,” Phys Rev E., Vol. 67, No.021907, February
2003
[35] R.C. McPhedran et al. , “Structural colours through photonic crystals
,” Physica B, Vol. 338, pp. 182–185, 2003
[36] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, N. A.
P. Nicorvici, “Aphrodite’s iridescence,” Nature, Vol. 409, pp.
36–37 ,January 2001
[37] V.G. Veselago, Sov. Phys. Usp., Vol. 10, pp. 509, 1968
[38] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism
from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans.
Microwave Theory Tech., Vol. 47, No.11, pp. 2075–2084, November
1999
[39] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S.
Schultz, “Composite Medium with Simultaneously Negative Permeability
and Permittivity,” Phys. Rev. Lett., Vol. 84, No. 18, pp. 4184–4187, May
2000
[40] P. LeClair, H. J. M. Swagten, J. T. Kohlhepp, R. J. M. van de
Veerdonk, W. J. M. de Jonge, “Apparent Spin Polarization Decay in
93
Cu-Dusted Co_Al2O3_Co Tunnel Junctions,” Phys. Rev. Lett., Vol.84,
No. 13, pp. 2933–2936, March 2000
[41] R. A. Shelby, D.R. Smith, and S. Schultz, “Experimental
Verification of a Negative Index of Refraction,” Science, Vol. 292, pp.
77–79, April 2001
[42] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev.
Lett., Vol. 85, No. 18, pp.3966–3969 (2000).
[43] P. Markos and C.M. Soukoulis, “Numerical studies of left-handed
materials and arrays of split ring resonators,” Phys. Rev. E, Vol. 65, No.
036622, March 2002
[44] P. Markos, I. Rousochatzakis, and C.M. Soukoulis, “Transmission
losses in left-handed materials,” Phys. Rev. E, Vol. 66, No. 045601(R),
October 2002
[45] R.B. Greegor, C.G. Parazzoli, K. Li, M.H. Tanielian, “Origin of
dissipative losses in negative index of refraction materials,” Appl. Phys.
Lett., Vol. 82,No. 14, pp. 2356–2358, April 2003
[46] S. Foteinopoulou, E.N. Economou, and C.M. Soukoulis, “Refraction
in Media with a Negative Refractive Index,” Phys.
Rev. Lett., Vol. 90, No.10, pp. 107402–1–4 , March 2003
94
[47] J. Pacheco, Jr., T.M. Grzegorczyk, T.B.I. Wu, Y. Zhang, and J.A.
Kong, “Power Propagation in Homogeneous Isotropic
Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett., Vol. 89,
No.25, pp. 257401–1–4, December 2002
[48] Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total Negative
Refraction in Real Crystals for Ballistic Electrons and Light,” Phys. Rev.
Lett., Vol. 91, No. 15, pp. 157404–1–4, October 2003
[49] D.R. Smith, D. Schurig, “ElectromagneticWave Propagation in
Media with Indefinite Permittivity and Permeability Tensors,” Phys. Rev.
Lett., Vol. 90, No.7, pp. 077405–1–4, February 2003
[50] A. A. Houck, J. B. Brock, I. L. Chuang, “Experimental Observations
of a Left-Handed Material That Obeys Snell's Law,” Phys. Rev. Lett., Vol.
90, No. 13, pp. 137401–1–4, April 2003
[51] J. Li, L. Zhou, C. T. Chan, P. Sheng, “Photonic Band Gap from a
Stack of Positive and Negative Index Materials,” Phys. Rev. Lett., Vol. 90,
No. 8, 083901–1–4, February 2003
[52] R. Ziokowski ,E. Heyman, “Wave propagation in media having
negative permittivity and permeability,” Phys. Rev. E, Vol. 64, pp.
056625–1–15, October 2001
95
[53] R. Andrews, E. R. Pike, Sarben Sarkar, “Theory of photon statistics
and squeezing in quantum interference of a sub-threshold parametric
oscillator,” Opt. Express, Vol. 11, pp. 7–13, January 2003
[54] G. Shvets, “Photonic approach to making a material with a negative
index of refraction,” Phys. Rev. B, Vol. 67, 0351091–1–8, 2003
[55] V. A. Podolskiy, A.K. Sarychev, and V.M. Shalaev, “Plasmon
modes and negative refraction in metal nanowire composites,” Opt.
Express, Vol. 11, No.7, pp. 735–745, April 2003
[56] S. A. Ramakrishna and J.B. Pendry, “Removal of absorption and
increase in resolution in a near-field lens via optical gain,” Phys. Rev. B,
Vol. 67, 201101–1–4, May 2003
[57] A. A. Zharov, I. V. Shadrivov, Y. S. Kivshar, “Nonlinear Properties
of Left-Handed Metamaterials,” Phys. Rev. Lett., Vol. 91, No. 3,
037401–1–4, July 2003
[58] R. Merlin, “Analytical solution of the almost-perfect-lens problem,”
Appl. Phys. Lett., Vol. 84, No. 8, pp. 1290–1292, February 2004
[59] L. Chen, S. He, and L. Shen, “Finite-Size Effects of a Left-Handed
Material Slab on the Image Quality,” Phys. Rev. Lett., Vol. 92, No.10, pp.
107404–1–4, March 2004
[60] D.R. Smith, D. Schurig, J.J. Mock, P. Kolinko, and P. Rye, “Partial
focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett., Vol.
96
84, No.13 , pp. 2244–2266, March 2004
[61] Z. Liu, N. Fang, T.-J. Yen, X. Zhang, “Rapid growth of evanescent
wave by a silver superlens,” Appl. Phys. Lett. ,Vol. 83, No.25, pp.
5184–5186, December 2003
[62] A. Grbic, G. V. Eleftheriades, “Overcoming the Diffraction Limit
with a Planar Left-Handed Transmission-Line Lens,” Phys. Rev. Lett.,
Vol. 92, No.11, pp. 117403–1–4, March 2004
[63] A. N. Lagarkov, V. N. Kissel, “Near-Perfect Imaging in a Focusing
System Based on a Left-Handed-Material Plate,” Phys. Rev. Lett., Vol. 92,
No. 7, pp. 077401–1–4, February 2004
[64] G.W. ’t Hooft, “Comment on “Negative Refraction Makes
a Perfect Lens,” Phys. Rev. Lett., Vol. 87, No. 24, pp. 249701, December
2001
[65] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.
Sato, S. Kawakami, “Superprism phenomena in photonic crystals,” Phys.
Rev. B, Vol. 58, No. 16, pp. R10 096–099, October 1998
[66] M. Notomi, “Theory of light propagation in strongly modulated
photonic crystals: Refractionlike behavior in the vicinity of the photonic
band gap,” Phys. Rev. B, Vol. 62, No.16, pp. 10 696–705, October 2000
97
[67] B. Gralak, S. Enoch, G. Tayeb, “Anomalous refractive properties of
photonic crystals,” J. Opt. Soc. Am. A, Vol. 17, No. 6, pp. 1012–1020,
June 2000
[68] S. Foteinopoulou ,C.M. Soukoulis, “Negative refraction and
left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B,
Vol. 67, pp. 235107–1–5, June 2003
[69] P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, S. Sridhar,
“Negative Refraction and Left-Handed Electromagnetism in Microwave
Photonic Crystals,” Phys. Rev. Lett., Vol. 92, No. 12, pp. 127401–1–4,
March 2004
[70] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “All-angle
negative refraction without negative effective index,” Phys. Rev. B, Vol.
65, pp. 201104–1–4, May 2002
[71] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,
“Negative refraction by photonic crystals,” Nature, Vol. 423, pp.
604–605, June 2003
[72] P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar “Imaging by flat lens
using negative refraction,” Nature, Vol. 426, pp. 404, November 2003
[73] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis,
98
“Subwavelength Resolution in a Two-Dimensional
Photonic-Crystal-Based Superlens,” Phys. Rev. Lett., Vol. 91, No. 20,
207401–1–4, November 2003
[74] X. Zhang, “Absolute negative refraction and imaging of unpolarized
electromagnetic waves by two-dimensional photonic crystals,” Phys. Rev.
B, Vol. 70, pp. 205102–1–6, November 2004
[75] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry,
“Subwavelength imaging in photonic crystals,” Phys. Rev. B, Vol. 68,
045115–1–15, July 2003
[76] Z. Y. Li, L. L. Lin, “Evaluation of lensing in photonic crystal slabs
exhibiting negative refraction,” Phys. Rev. B, Vol. 68, 245110–1–7 ,
December 2003
[77] J. D. Joannopolous, R. D. Meade, J. N. Winn, Photonic Crystals,
Princeton University Press, Princeton, 1995
[78] V. M. Agranovich, Y. R. Shen, R. H. Baughman, A. A. Zakhidov,
“Linear and nonlinear wave propagation in negative refraction
metamaterials,” Phys. Rev. B, Vol. 69, pp. 165112–1–7, April 2004
[79] J. M. Williams, “Some Problems with Negative Refraction,” Phys.
Rev. Lett., Vol. 87, No.24, pp. 249703, December 2001
99
[80] N. Garcia1, M. Nieto-Vesperinas, Madrid, “Left-Handed Materials
Do Not Make a Perfect Lens,” Phys. Rev. Lett., Vol. 88, pp. 207403–1–4,
May 2002
[81] A. L. Pokrovsky, A. L. Efros, “Electrodynamics of Metallic Photonic
Crystals and the Problem of Left-Handed Materials,” Phys. Rev. Lett., Vol.
89, 093901–1–4, August 2002
[82] C. Luo, S. G. Johnson, J. D. Joannopoulos, “All-angle negative
refraction in a three-dimensionally periodic photonic crystal,” Appl. Phys.
Lett., Vol. 83, No.13, 2352–2354, September 2002
[83] C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, “Negative
refraction without negative index in metallic photonic crystals,” Opt.
Express, Vol. 11, No.7, pp. 746–754, March 2003
[84] Kenji Kawano, Tsutomu Kitoh, Introduction to Optical Waveguide
Analysis…Solving Maxwell’s Equation and the Schrödinger Equation,
John Wiley & Sons., Inc., 2001.
[85] J.-P. Berenger, “A Perfectly Matched Layer for the Absorption of
Electromagnetic Waves,” Jour. Of comp. Phys., Vol. 114, pp. 185–200,
July 1994
[86] K. S. Yee., “Numerical Solution of Initial Boundary Value Problems
100
Involving Maxwell’s Equations in Isotropic Media,” IEEE, Trans.
Antennas Propag., Vol. 14, January 1966
[87] O. Ramadan, “State-space FDTD implementation of anisotropic
perfectly matched layer,” Electron. Lett., Vol. 39, No. 13, June 2003
[88] David K. Cheng, Field and Wave Electromagnetics,
Addison–Wesley publishing Company, 2nd, 1989.
[89] J.-P. Berenger, “Three-Dimensional Perfectly Matched Layer for
Electromagnetic Waves,” Jour. Of Computational Physics, Vol. 127, No.
0181, pp. 363–379, October 1997
[90] D. T. Prescott, N. V. Shuley, “Reflection Analysis of FDTD
Boundary Conditions—Part II: Berenger’s PML Absorbing Layers,”
IEEE Transactions on microwave theory and technique, Vol.45 , No.8 ,
pp. 1171–1178, August 1997
[91] G. Mur, “Absorbing boundary conditions for the finite difference
approximation of the time-domain electromagnetic-field equations,”
IEEE Trans. Electromagn. Compat., vol. 23, pp. 377-382, Nov. 1981
[92] M. Plihal, A. A. Maradudin, “Photonic band structure of
two-dimensional systems: The triangular,” Phys. Rev. B, Vol. 44, No. 16,
pp. 8565–8571, October 1991
101
[93] K. Sakoda, Optical Properties of Photonic Crystal, Springer, 2001,
[94] Charles Kittel, Introduction to Solid State Physics, John Wiley &
Sons, Inc., 7th, 1953, 1956, 1966, 1971, 1976, 1986, 1996
[95] H. T. Chien, H. T. Tang, C. H. Kuo, C. C. Chen, Z. Ye, “Directed
diffraction without negative refraction,” Phys. Rev. B, Vol. 70, pp.
113101–1–4, September 2004
[96] C.-H. Kuo and Z. Ye, cond-mat/0310423 (unpublished);
cond-mat/0312288 (unpublished)
[97] L. S. Chen, C. H. Kuo, Z. Ye, “Guiding optical flows by photonic
crystal slabs made of dielectric cylinders,” Phys. Rev. E, Vol. 69,
066612–1–6, June 2004
[98] Z. Ye, A note on the group and energy velocities of waves in crystals,
unpublished.
[99] A. Yariv, P. Yeh, Optical waves in crystals, John Wiley & Sons, Inc.,
Taipei, 1984
[100] Z. Ye (unpublished); C.-H. Kuo and Z. Ye, cond-mat/0405008
(unpublished)
[101] X. Yu, S. Fan, “Bends and splitters for self-collimated beams in
photonic crystals,” Appl. Phys. Lett., Vol. 83, No. 16, pp. 3251–3253,
102
October 2003
[102] J. Witzens, M. Loncar, A. Scherer, “Self-collimation in planar
photonic crystals”. Quantum electronics., Vol. 8, No. 6, pp. 1246-1257 ,
November/ December 2002 |