博碩士論文 102329003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.118.198.191
姓名 林柏穎(Po-Ying Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 開發低反射矽奈米表面結構製作技術並應用於多晶矽太陽能電池
(Development of antireflective silicon nanostructures for polycrystalline silicon solar cells)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多晶矽太陽能電池因為在成本與效能間的優異平衡下成為目前光伏產業中的主流產品。為了提升轉換效率,除了考量半導體材料本身的物理特性或材料內部缺陷等因素外,如何能夠最有效的利用電池所接收到的入射太陽光成為提升太陽能電池效能的重要課題。傳統上是以鹼金屬溶液對單晶矽太陽能電池進行表面粗糙化處理。但此蝕刻液會在多晶矽的晶界處發生裂縫與不理想的階梯狀結構使其抗反射效果不佳。此外由於晶面的選擇性蝕刻而產生外觀上的顏色不均勻則在商業應用上有美觀的疑慮。

因此本研究結合 HNO3/HF 濕蝕刻和 SF6/O2 反應式離子蝕刻 (RIE) 對多晶矽太陽能電池表面製備微米-奈米尺寸的抗反射結構。並藉由調整製成參數如:壓力、混和氣體比例和射頻功率以獲得具備外觀色澤均勻同時保有低反射率的最佳化蝕刻結構。相較於只以酸蝕刻進行粗糙化處理的標準試片,具有最佳化 RIE 織構的多晶矽太陽能電池其照光下的短路電流增加 2.04 (mA/cm2)。且由於光捕捉 (light trapping) 效應的貢獻使光電轉換效率提升 2.58%。

摘要(英) Multi-crystalline silicon (mc-Si) solar cells dominate PV manufacturing due to its excellent balance between cost and efficiency. The performance of mc-Si solar cells depends critically on the optical losses caused by the high reflectivity of c-Si wafers. In addition, the color difference on the grains with various crystalline orientations after alkali texturing causes aesthetic concerns in residential applications. At the first stage of this study, in order to obtain the optimized dimension of the structure, the simulation of surface textured was implemented by RCWA method. The textured mc-Si with micro-sized and nano-sized structures were fabricated using reactive ion etching (RIE) combined with wet chemical etching. A surface modification of mc-Si with low reflectivity and uniform color can be achieved by adjusting the etching parameters (e.g., pressure, gas mixture and RF power). Compared with the reference wet etching texture, mc-Si solar cell with optimized RIE textured was improved 2.04 (mA/cm2) in short current density. Conversion efficiency was enhanced 2.58%, since the contribution of excellent light trapping effect.

關鍵字(中) ★ 多晶矽太陽能電池
★ 粗糙化處理
★ 濕蝕刻
★ 反應式離子蝕刻
關鍵字(英) ★ texture
★ multi-crystalline silicon
★ wet etching
★ reactive ion etching
論文目次 目錄

摘要..............................................................................................................................Ⅰ

Abstract........................................................................................................................Ⅱ

致謝..............................................................................................................................Ⅲ

目錄..............................................................................................................................Ⅵ

圖目錄..........................................................................................................................Ⅳ

表目錄..........................................................................................................................Ⅸ

第一章: 緒論................................................................................................................1

1-1 前言.................................................................................................................1

1-2 研究動機.........................................................................................................2

第二章: 文獻回顧.........................................................................................................3

2-1 矽基太陽能電池基本理論.................................................................................... 3

2-1-1太陽能光譜...................................................................................................3

2-1-2 太陽能電池之重要參數.............................................................................5

2-2抗反射技術..........................................................................................................11

2-2-1由下而上製成.............................................................................................12

2-2-2 由上而下製成...........................................................................................14

2-3太陽能電池之抗反射結構...................................................................................15

2-3-1 單晶矽之抗反射結構...............................................................................15

2-3-2多晶矽之抗反射結構................................................................................16

2-4反應式離子蝕刻....................................................................................................19

2-4-1 蝕刻原理...................................................................................................19

2-4-2 表面織化結構..........................................................................................20

2-5於多晶矽基板蝕刻微奈米結構技術的相關文獻整理.......................................21

2-6 嚴格耦合波理論..................................................................................................24

第三章 研究方法.....................................................................................................28

3-1反應式離子蝕刻實驗流程....................................................................................28

3-2 RCWA模擬流程....................................................................................................30

3-3 製備多晶矽之抗反射結構...................................................................................30

3-4製備多晶矽太陽能電池........................................................................................32

第四章 實驗結果與討論..........................................................................................34

4-1 反應式離子蝕刻...................................................................................................34

4-1-1 反應壓力之影響......................................................................................34

4-1-2 氣體混和比之影響..................................................................................37

4-1-3 射頻功率之影響.....................................................................................39

4-2 RCWA 模擬..........................................................................................................39

4-3 多晶矽上之抗反射結構........................................................................................43

4-4 不同抗反射結構對多矽太陽能電池太之性能比較............................................46

第五章 結論..............................................................................................................49

參考文獻....................................................................................................................50

參考文獻 [1] A. D. Little, H. Scheer, B. McNelis, W. Palz, H. A. Ossenbrink, P. Helm, Proc. 16th Europ. Photovolt. Solar Energy Conf., James & James Ltd., London, 9 (2000)

[2] H. de Moor, A. Jager Waldau, Proc. PVNET workshop proceeding of R&D Strategy fot PVQ;Special Publication: S.P.I.02.117, European Commission, DG Joint Res. Center, Ispra (2002)

[3] K. Tsujino, M. Matsumura, Y. Nishimoto, Sol. Energy Mater. Sol. Cells, 90, 100 (2006)

[4] http://www.mysolarpannels.com/home-solar-panels/

[5] 楊俊豪,「利用新穎方法製備鋁背表面電場應用於矽基太陽能電池」,國立中央大學,碩士論文,2014年

[6] P.A. Sheppard, Handbook of Geophysics, Geophysical journal of the royal astronomical Society, 476 (1960)

[7] Http://www.greenrhinoenergy.com/solar/radiation/spectra.php

[8] S. O. Kasap, Optoelectronics and Photonics Principles and Practices Prentice -Hall, ed. 1.0, (2001)

[9] D. A. Neamen, Semiconductor Physics and devices: basic principles, mcGraw-hill, (2003)

[10] H. Hoppe , N. S. Sariciftci, Organic solar cells, journal of materials research 19, 1924 (2004)

[11] B. Fischer, Loss analysis of crystalline siliconsolar cells using photo-conductance and quantum efficiency measurements, Ph.D Thesis, University of Konstanz , (2003)

[12] R. Schimpe, Journal of Electronics and Communications, 46, 80 (1992)

[13] E. Yablonovitch, J. Opt. Soc. Am. A, 72, 899 (1982).

[14] S. Chitre, 13th IEEE Photovoltaic specialist conference, 152 (1978).

[15] D.H. MacDonald, A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Solar Energy, 76, 277 (2004).

[16] D. S. Ruby, S. H. Zaidi, S. Narayananan, B. M. Damiani, A. Rohatgi, Solar Energy Materials & Solar Cells, 74, 133 (2002).

[17] J. B. Park, J. S. Oh, E. Gil, S.-J. Kyoung, J.-S. Kim, G. Y. Yeom, Journal of Physical D: Applied Physics, 42, 215201 (2009).

[18] M. Tucci, L. Serenelli, S. De Iuliis, E. Salza, L. Pirozzi., Proceeding of XXI European Photovoltaic Solar Energy Conference Dresden, 1250 (2006).

[19] S. Walheim, Science, 283, 520 (1999)

[20] J. Q. Xi, M. F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.Y. Lin, W. Liu, J.A. Smart, Nat. Photonics, 1, 176 (2007).

[21] J. Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T. M. Lu, S. Y. Lin, J. S. Juneja, Optic. Letters, 31, 601 (2006).

[22] Z.P. Yang, L. Ci, J.A. Bur, S.Y. Lin, P.M. Ajayan, Nano Letters, 8, 446 (2008).

[23] J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A.J. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Advance Materials, 20, 801 (2008).

[24] H.Y. Chen, H.W. Lin, C.Y. Wu, W.C. Chen, J.S. Chen, S. Gwo, Optics Express, 16, 8106 (2008).

[25] S. Chhajed, M. F. Schubert, J. K. Kim, E. Fred Schubert, Applied Physics Letters, 93, 251108 (2008).

[26] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, J. Zhu, Angewandte Chemie International Edition, 44, 2737 (2005).

[27] S. Koynov, M.S. Brandt, M. Stutzmann, Physica Status Solidi, 88, 203107 (2006).



[28] J. Shieh, C.H. Lin, M.C. Yang, ournal of Physical D: Applied Physics, 40, 2242 (2007).

[29] D. L. King, M.E. Buck, Proceedings of the 22th IEEE PVSC, Las Vegas, NV, USA, 303 (1991). KOH

[30] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J.Poortmans, J. Szlufcik, J. Nijs, Solar Energy Materials & Solar Cells, 57 179 (1999).

[31] W. Sparber, O. Schultz, D. Biro, G. Emanuel, R. Preu, A. Poddey, D. Borchert, Proceedings of the third World Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003).

[32] D. Iencinella, E. Centurioni, R. Rizzoli, F. Zignani, Solar Energy Materials & Solar Cells, 87, 725 (2005).

[33] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.F. Lelievre, A. Chaumartin, A. Fave, M. Lemiti, Solar Energy Materials & Solar Cells, 90, 2319 (2006).

[34] A. Hauser, I. Melnyk, P. Fath, S. Narayanan, S. Roberts,T. M. Bruton, 3rd World Conference on Photovoltaic Energy Conversion, May 11, Osaka Japan (2003).

[35] Shimura, F., Semiconductor Silicon Crystal Technology, Academic Press. Inc., San Diego, 184 (1989).

[36] H. Robbins, B. Schwartz, Journal of the Electrochemical Society, 106, 505 (1959).

[37] Y. Nishimoto, T. Ishihara, K. Namba, Journal of the Electrochemical Society, 146, 457 (1999).

[38] Y. T. Cheng, J. J. Ho, S. Y. Tsai, Z. Z. Ye, W. Lee, D. S. Hwang, S. H. Chang, C. C. Chang, K. L. Wang, Solar Energy, 85, 87 (2011).

[39] Y. T. Cheng, J. J. Ho, W. J. Lee, S. Y. Tsai,Y. A. Lu, J. J. Liou, S. H. Chang, K. L. Wang, International Journal of Photoenergy, 268035, 1 (2010).

[40] J. Yoo, G. Tu, J, Yi, Solar Energy Materials & Solar Cells, 95, 2 (2011)

[41] H. F. W. Dekkers, F. Duerincx, J. Szlufcik, and J. Nijs, Opto-Electronics Review, 8, 311 (2000).

[42] R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, Journal of the Electrochemical Society,142, 2020 (1995)

[43] H. Jansen, M.de Boer, R. Legtenberg, M. Elwenspoek, Journal of Micromechanics and Microengineering, 5, 115 (1995).

[44] M. M. Smadi, G. Y. Kong, R. N. Carlile, and S. E. Beck, ibid., 139, 3356 (1992).

[45] Martin Schnell. Ralf Ludemann, Sebastian Schaefer, Proc. 28th lEEE Photovoltaic Specialists Conf, 367 (2000)

[46] R. Watanabe,S. Abe,S. Haruyama,T.Suzuki,M. Onuma, Y.Saito, International Journal of Photoenergy, 951303, 6 (2013)

[47] D. Z. Dimitrov , C. H. Lin , C. H. Du , C. W. Lan, Phys. Status Solidi, 208, 2926 (2011).

[48] M. Abburi, T. Boström, I. Olefjord, Materials Chemistry and Physics, 139, 756 (2013).

[49] M. Agarwal, U. Singh, R. O. Dusane , A. Soam, International Conference on Advanced Nanomaterials & Emerging Engineering Technologies (2013).

[50] Y. T.Cheng, J. J. Ho, S. Y. Tsai, Z. Z. Ye, W. Lee, D. S. Hwang, S. H. Chang, C. C. Chang, K. L. Wang, Solar Energy, 85, 87 (2011).

[51] K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, J. Yi, Solar Energy Materials & Solar Cells, 92, 960 (2008).

[52] E. S. Marstein, H. J. Solheim, D. N. Wright, A. Holt, IEEE, 1309 (2005).

[53] P. Panek, M. Lipiński, J. Dutkiewicz, Journal of Materials Science, 40, 1459 (2005).



[54] A. Hauser, I. Melnyk, P. Fath, S. Narayanan, S. Roberts, T. M. Bruton, 3rd World Conference of Photovoltaic Energy Conversion (2003).

[55] M. Lipiński, P. Panek, Z. Świątek, E. Bełtowska, R. Ciach, Solar Energy Materials & Solar Cells, 72, 271 (2002).

[56] Y. Nishimoto,T. Ishihara, and K. Namba, Journal of The Electrochemical Society, 146, 457 (1999).

[57]S. K. Srivastava n , D.Kumar, V., M. Sharma, R.Kumar, P.K. Singh, Solar Energy Materials & Solar Cells, 100, 33 (2012).

[58] B. Dou, R. Jia, H. Li, C. Chen, Y. Sun, Y. Zhang, W. Ding, Y. Meng, X. Liu, T. Ye, Solar Energy, 91, 145 (2013).

[59] S. Koynov, M. S. Brandt, M.Stutzmann, Applied Physics Letters, 88, 203107 (2006).

[60] K. Tsujino, M. Matsumura, Y. Nishimoto, Solar Energy Materials & Solar Cells, 90, 100 (2006).

[61] L. Cecchetto, L. Serenelli, G. Agarwal, M. Izzi, E. Salza, M. Tucci, Solar Energy Materials & Solar Cells, 116, 283 (2013).

[62] J. Liu, B. Liu, Z. Shen, J. Liu, S.Zhong, S. Liu, C. Li, Y. Xia, Solar Energy, 86, 3004 (2012).

[63] J Yoo, K. Kim, M Thamilselvan, N Lakshminarayn, Y. K. Kim, J. Lee, K. J. Yoo J. Yi, Journal of Physics D: Applied Physics, 41, 125205 (2008).

[64] W.A. Nositschkaa, O. Voigta,w, P. Manshandenb, H. Kurza, Solar Energy Materials & Solar Cells 80, 227 (2003).

[65] S. H. Zaidi, D. S. Ruby, J. M. Gee, IEEE Transactions on Electron Devices, 48, 6 (2001).

[66] Y. Inomata, K. Fukui, K. Shirasawa, Solar Energy Materials and Solar Cells, 48, 237 (1997).

[67] S. Landis, M. Pirot, R. Monna, Y. Lee, P. Brianceau, J. Jourdan, S. Mialon, P.J. Ribeyron, Microelectronic Engineering, 111, 224 (2013).

[68] K. Wang, O. Gunawan, N. Moumen, G.Tulevski, H.Mohamed, B. Fallahazad, E. Tutuc, S. Guha, Optics Express, 18, No. S4 A568 (2010).

[69] W.A. Nositschka, C. Beneking, O. Voigt, H. Kurz, Solar Energy Materials & Solar Cells, 76, 155 (2003).

[70] S. Winderbaum, O. Reinhold, F. Yun, Solar Energy Materials and Solar Cells, 46, 239-248 (1997).

[71] R. Legtenberg, H. Jansen, M. de Boer, M. Elwenspoek, J. Electrochem. Sac, 142, 2020 (1995)

[72] H.Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, J. Micromech. Microeng, 5, 115 (1995)

[73] 劉勇志,「波導模態共振濾波器頻譜平坦化之研究」,國立中央大學,碩士論文,2006 年

[74] P. M. Kopalidis, J. Jorne, J. Electrochem. Soc., 139, 839 (1992)

指導教授 陳一塵(Chen-I Chen) 審核日期 2015-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明