參考文獻 |
1. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928-935.
2. Rahman, M.A., X. Wang, and C. Wen, High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 2013. 160(10): p. A1759-A1771.
3. Goh, F.W.T., et al., Ag nanoparticle-modified MnO2 nanorods catalyst for use as an air electrode in zinc-air battery. Electrochimica Acta, 2013. 114: p. 598-604.
4. Chakkaravarthy, C., A.K.A. Waheed, and H.V.K. Udupa, ZINC-AIR ALKALINE BATTERIES - A REVIEW. Journal of Power Sources, 1981. 6(3): p. 203-228.
5. Li, Y. and H. Dai, Recent advances in zinc-air batteries. Chem Soc Rev, 2014. 43(15): p. 5257-75.
6. D. Linden, T.B.R., Handbooks of Batteries. 2001: McGraw-Hill.
7. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
8. Abraham, K.M. and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery. Journal of the Electrochemical Society, 1996. 143(1): p. 1-5.
9. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 2004. 104(10): p. 4303-4417.
10. Whittingham, M.S., Metal-Air Batteries: A Reality Check. The Electrochemical Society, 2012.
11. Chek Hai Lim, A.G.K., Hyun-Wook Lee, Do Kyung Kim, LiTi2(PO4)3/reduced graphene oxide hybrids for high performance cathode materials in lithium ion batteries. The Electrochemical Society, 2012.
12. Steven J. Visco, B.D.K., Yevgeniy S. Nimon, Lutgard C. De Jonghe, Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7,282,295, 2007.
13. Kumar, B., et al., A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery. Journal of the Electrochemical Society, 2010. 157(1): p. A50-A54.
14. G. Toussaint, P.S., L. Akrour, R. Rouget and and F. Fourgeot, ECS Trans, 2010. 28: p. 25.
15. Gewirth, A.A. and M.S. Thorum, Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges. Inorganic Chemistry, 2010. 49(8): p. 3557-3566.
16. Spendelow, J.S. and A. Wieckowski, Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2654-2675.
17. Lee, J.-S., et al., Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011. 1(1): p. 34-50.
18. Cheng, F. and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012. 41(6): p. 2172-2192.
19. Cao, R., et al., Recent Progress in Non-Precious Catalysts for Metal-Air Batteries. Advanced Energy Materials, 2012. 2(7): p. 816-829.
20. Kim, H., et al., Metallic anodes for next generation secondary batteries. Chemical Society Reviews, 2013. 42(23): p. 9011-9034.
21. Wang, Z.L., et al., Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014. 43(22): p. 7746-7786.
22. J. Jindra, J.M., M. Musilová, Journal of Applied Electrochemistry: p. Volume 3, Issue 4 , PP 297-301
23. Sapkota, P. and H. Kim, Zinc-air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 2009. 15(4): p. 445-450.
24. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. 1974: Cebelcor, Brussels.
25. PAUL DELAHAY, M.P., and PIERRE VAN RYSSELBERGHE, Potential-pH Diagram of Zinc and Its Applications to the Study of Zinc Corrosion. J. Electrochem. Soc., 1951. 98(3): p. 101-105.
26. Kim, K., et al., Anions of organic acids as gas suppressants in zinc-air batteries. Materials Research Bulletin, 2010. 45(3): p. 262-264.
27. Yang, C.C. and S.J. Lin, Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources, 2002. 112(1): p. 174-183.
28. Cheng, H.-H. and C.-S. Tan, Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. Journal of Power Sources, 2006. 162(2): p. 1431-1436.
29. Shaigan, N.Q., W.; Takeda, T., Morphology Control of Electrodeposited Zinc from Alkaline Zincate Solutions for Rechargeable Zinc Air Batteries. ECS Transactions, 2010. 28(32): p. 35-44.
30. Qing Hua Tian, L.Z.C., Jing Xin Liu, Xue Yi Guo, Manufacturing of Zinc Powder with Dendritic Microstructure for Zinc-Air Battery by Electrodeposition. Advanced Materials Research, 2012. 460: p. 300-303.
31. Lee, C.W., et al., Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. Journal of Power Sources, 2006. 159(2): p. 1474-1477.
32. Liang, M., et al., Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries. Journal of Applied Electrochemistry, 2011. 41(8): p. 991-997.
33. Mele, C. and B. Bozzini, Spectroelectrochemical investigation of the anodic and cathodic behaviour of zinc in 5.3 M KOH. Journal of Applied Electrochemistry, 2014. 45(1): p. 43-50.
34. Morón, L.E., et al., Zn Electrodeposition from an Acidic Chloride Bath Containing Polyethyleneglycol (Mw 200) and Benzylideneacetone as Additives. Journal of The Electrochemical Society, 2011. 158(7): p. D435.
35. Ghavami, R.K. and Z. Rafiei, Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. Journal of Power Sources, 2006. 162(2): p. 893-899.
36. Plechkova, N.V. and K.R. Seddon, Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008. 37(1): p. 123-150.
37. Huang, J.F., et al., Hydrophobic bronsted acid-base ionic liquids based on PAMAM dendrimers with high proton conductivity and blue photoluminescence. Journal of the American Chemical Society, 2005. 127(37): p. 12784-12785.
38. Earle, M.J., et al., The distillation and volatility of ionic liquids. Nature, 2006. 439(7078): p. 831-834.
39. Enders, A., et al., Magic alkali-fullerene compound clusters of extreme thermal stability. Journal of Chemical Physics, 2006. 125(19).
40. Wasserscheid, P., Chemistry - Volatile times for ionic liquids. Nature, 2006. 439(7078): p. 797-797.
41. Chang, J.-K., et al., Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl(3))-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior. Electrochemistry Communications, 2007. 9(7): p. 1602-1606.
42. Deng, M.-J., et al., Dicyanamide anion based ionic liquids for electrodeposition of metals. Electrochemistry Communications, 2008. 10(2): p. 213-216.
43. Simons, T.J., et al., High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications, 2012. 18: p. 119-122.
44. Xu, M., et al., Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochimica Acta, 2013. 89: p. 756-762.
45. Gasparac, R., et al., In situ and ex situ studies of imidazole and its derivatives as copper corrosion inhibitors II. AC impedance, XPS, and SIMS studies. Journal of the Electrochemical Society, 2000. 147(3): p. 991-998.
46. Quraishi, M.A., et al., Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives. Journal of Applied Electrochemistry, 2007. 37(10): p. 1153-1162.
47. Ashassi-Sorkhabi, H. and M. Es′haghi, Corrosion inhibition of mild steel in acidic media by BMIm Br Ionic liquid. Materials Chemistry and Physics, 2009. 114(1): p. 267-271.
48. Zhang, Q.B. and Y.X. Hua, Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochimica Acta, 2009. 54(6): p. 1881-1887.
49. Guzman-Lucero, D., et al., Synthesis of Selected Vinylimidazolium Ionic Liquids and Their Effectiveness as Corrosion Inhibitors for Carbon Steel in Aqueous Sulfuric Acid. Industrial & Engineering Chemistry Research, 2011. 50(12): p. 7129-7140.
50. Zhao, Z., et al., Study on corrosion property of a series of hexafluorophosphate ionic liquids on steel surface. Corrosion Engineering Science and Technology, 2011. 46(4): p. 330-333.
51. Zhou, X., H. Yang, and F. Wang, BMIM BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochimica Acta, 2011. 56(11): p. 4268-4275.
52. Tuken, T., et al., Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corrosion Science, 2012. 59: p. 110-118.
53. Xu, M., et al., Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. Journal of Power Sources, 2015. 274: p. 1249-1253.
54. Muresan, L., et al., INHIBITION OF LEAD ELECTROCRYSTALLIZATION BY ORGANIC ADDITIVES. Electrochimica Acta, 1992. 37(12): p. 2249-2254.
55. Be´rube´ LP, L.E.r.G., A quantitative method of determining the degree of texture of zinc electrodeposits. J Electrochem Soc, 1989. 136(8): p. 2314.
56. Juhel, G., et al., EFFECT OF THE SURFACTANT FORAFAC ON HYDROGEN EVOLUTION ON A ZINC ELECTRODE. Electrochimica Acta, 1990. 35(2): p. 479-481.
57. de Carvalho, M.F., E.P. Barbano, and I.A. Carlos, Influence of disodium ethylenediaminetetraacetate on zinc electrodeposition process and on the morphology, chemical composition and structure of the electrodeposits. Electrochimica Acta, 2013. 109: p. 798-808.
58. Ortiz-Aparicio, J.L., et al., Electrodeposition of zinc in the presence of quaternary ammonium compounds from alkaline chloride bath. Journal of Applied Electrochemistry, 2014. 45(1): p. 67-78.
|