博碩士論文 102226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.15.145.50
姓名 張雅真(Ya-chen Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 超親水複合薄膜之製備及其表面特性分析
(Fabrication of superhydrophilic hybrid thin film and analysis of its surface character)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 超親水複合薄膜(TiO2+SiO2)可簡單的利用溶膠-凝膠法製備,由二氧化鈦奈米顆粒混合溶膠-凝膠法製備出的二氧化矽而製得。整體膜層架構為一個雙層結構,分別為TiO2+SiO2/AR coating/glass以及TiO2+SiO2/SiO2/glass。

透過兩種不同中間層抗反射膜層(AR Coating)或二氧化矽薄膜(SiO2)提高整體膜層之穿透率。抗反射膜層之添加可使整體膜層在可見光波段(400-700 nm)的平均穿透率達到94.3%,而二氧化矽薄膜則可使穿透提升至91.4%。超親水複合薄膜的水滴接觸角在照UV光(253.7 nm, 4 mW/cm2)4小時後具有接觸角小於10°之超親水特性,且將薄膜置於暗房內其超親水特性可維持76小時。

機械性質方面,附著力測試根據ISO 2409標準下其品質等級為1,也就是薄膜整體的剝落程度<5%;薄膜進行鉛筆硬度測試,在3H鉛筆刻劃下無任何刮痕,可達到3H的鉛筆硬度;而對於耐磨耗測試,可耐磨大於1280次。

在環境測試部分,將超親水複合薄膜放置在不同溫度、濕度及時間,如高溫高濕試驗85℃、85%RH 100小時和高溫耐久性測試100℃, 168 h,考驗其抵抗能力,結果顯示薄膜皆無脫膜、裂膜現象,且照UV光之後超親水複合薄膜仍顯示具有超親水現象,因此對環境具有良好的抵抗能力。

摘要(英) Sol-gel process is an easy method for fabricating a superhydrophilic hybrid thin film. A two-layer structure, TiO2+SiO2/AR coating/glass and TiO2+SiO2/SiO2/glass, was designed and fabricated.

The transmittance of superhydrophilic hybrid thin film was increased by inserting AR coating or SiO2 film between TiO2+SiO2 and glass. The transmittance of TiO2+SiO2/AR coating/glass and TiO2+SiO2/SiO2/glass was 94.3% and 91.4%, respectively.

The water contact angle (WCA) of the TiO2+SiO2 superhydrophilic hybrid thin film was less than 10° following treatment with ultraviolet irradiation (253.7 nm, 4 mW/cm2). The superhydrophilic hybrid thin film exhibited lasting superhydrophilicity when stored in a dark place (opaque acrylic box). After 76 h of storage in a dark place, the superhydrophilic hybrid thin film exhibited a significantly lower WCA.

To ensure that the durable TiO2+SiO2 superhydrophilic hybrid thin film, its mechanical properties were measured. The hardness of the superhydrophilic hybrid thin film was obtained (≥ 3 H) by performing the pencil hardness test. According to the ISO 2409 standard, the adhesion of a superhydrophilic hybrid thin film causes it to be given a quality rank of 1. The superhydrophilic property was be maintained after the thin film was treated by pressing steel wool under a 500 g weight and moving it parallel to the substrate, back and forth on it more than 1280 times.

The phenomenon of thin film cracking and stripping was not observed under 100 ℃ (168 h) and 85 %RH (100 h).

關鍵字(中) ★ 超親水
★ 薄膜
★ 表面特性
關鍵字(英) ★ Superhydrophilic
★ Thin film
★ Surface character
論文目次 摘要 i

Abstract ii

致謝 iv

目錄 v

圖目錄 viii

表目錄 xi

第一章:緒論 1

1-1 前言 1

1-2 研究動機與目的 2

1-3 研究目標 2

1-4 本文架構 3

第二章:基本理論 4

2-1 奈米級二氧化鈦簡介 4

2-1-1 光反應機制 8

2-1-2 超親水特性 10

2-1-3 奈米級二氧化鈦光觸媒材料應用及薄膜之製備方式 14

2-2 親水性簡介 17

2-2-1 水接觸角 17

2-2-2 親疏水性 19

2-3 溶膠-凝膠法 20

2-3-1 溶膠-凝膠法之發展與現況 20

2-3-2 溶膠-凝膠反應程序(Sol-Gel process) 21

2-3-3 溶膠-凝膠影響因素 22

2-3-4 溶膠-凝膠法之成膜方式 26

2-3-5 溶膠-凝膠法之應用 29

第三章:實驗步驟與實驗儀器設備 31

3-1 實驗製備流程: 31

3-2 鍍膜儀器設備 34

3-2-1 電子槍蒸鍍 34

3-2-2 浸泡成膜法(Dip-Coating) 36

3-2-3 自動拉膜機 37

3-3 量測與分析之設備儀器 38

3-3-1 可見光/近紅外光光譜儀 38

3-3-2 接觸角量測儀 38

3-3-3 鉛筆硬度計(Hardness test) 39

3-3-4 方格試驗機(Adhesion test) 40

3-3-5 鋼絲絨磨耗試驗(Abrasion test) 41

3-3-6 場發射式掃描電子顯微鏡 42

第四章:實驗結果與討論 45

4-1 超親水複合薄膜 45

4-2 超親水複合薄膜之光學特性 50

4-3 超親水複合薄膜之親水特性 55

4-4 超親水複合薄膜之機械性質 57

4-4-1 硬度測試(Hardness test) 57

4-4-2 附著力測試(Adhesion test) 58

4-4-3 耐磨耗測試(Abrasion test) 58

4-4-4 環境測試 60

第五章:結論 63

參考文獻 64

參考文獻 1. Trost, M., Schröder, S., Feigl, T., Duparré, A. & Tünnermann, A., 2011, "Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers". ApOpt 50, C148-C153.

2. Hornbeck, L.J. (Google Patents, 1995).

3. Klersy, P.J., Jablonski, D.C. & Ovshinsky, S.R. (Google Patents, 1993).

4. Carcia, P., McLean, R., Reilly, M. & Nunes Jr, G., 2003, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering". ApPhL 82, 1117-1119.

5. Barthlott, W. & Neinhuis, C., 1997, "Purity of the sacred lotus, or escape from contamination in biological surfaces". Planta 202, 1-8.

6. Guan, K., 2005, "Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films". Surf. Coat. Technol. 191, 155-160.

7. Fujishima, A., 1972, "Electrochemical photolysis of water at a semiconductor electrode". Nature 238, 37-38.

8. Wang, R. et al., 1997, "Light-induced amphiphilic surfaces". Nature 388, 431-432.

9. Fujishima, A., Rao, T.N. & Tryk, D.A., 2000, "Titanium dioxide photocatalysis". Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1, 1-21.

10. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A., 1997, "Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect". J. Photochem. Photobiol. A: Chem. 106, 51-56.

11. Senogles, P.-J., Scott, J.A., Shaw, G. & Stratton, H., 2001, "Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation". Water Res. 35, 1245-1255.

12. Swamy, V. & Dubrovinsky, L., 2001, "Bulk modulus of anatase". JPCS 62, 673-675.

13. Okimura, K., 2001, "Low temperature growth of rutile TiO2 films in modified RF magnetron sputtering". Surf. Coat. Technol. 135, 286-290.

14. Diebold, U., 2003, "The surface science of titanium dioxide". SurSR 48, 53-229.

15. Banerjee, S., Gopal, J., Muraleedharan, P., Tyagi, A. & Raj, B., 2006, "Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy". CSci 90, 1378-1383.

16. Nakaruk, A., Ragazzon, D. & Sorrell, C., 2010, "Anatase–rutile transformation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis". Thin Solid Films 518, 3735-3742.

17. Martin, N., Rousselot, C., Rondot, D., Palmino, F. & Mercier, R., 1997, "Microstructure modification of amorphous titanium oxide thin films during annealing treatment". Thin Solid Films 300, 113-121.

18. Bacsa, R. & Kiwi, J., 1998, "Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid". Applied Catalysis B: Environmental 16, 19-29.

19. Curcó, D., Giménez, J., Addardak, A., Cervera-March, S. & Esplugas, S., 2002, "Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants". Catal. Today 76, 177-188.

20. Kumar, S.G. & Devi, L.G., 2011, "Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics". The Journal of Physical Chemistry A 115, 13211-13241.

21. Sumita, T. et al., 1999, "Ion-beam modification of TiO2 film to multilayered photocatalyst". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 148, 758-761.

22. Hata, S. et al., 2000, "Development of hydrophilic outside mirror coated with titania photocatalyst". Jsae Review 21, 97-102.

23. Wang, R. et al., 1998, "Photogeneration of highly amphiphilic TiO2 surfaces". Adv. Mater. 10, 135-138.

24. Wang, R., Sakai, N., Fujishima, A., Watanabe, T. & Hashimoto, K., 1999, "Studies of surface wettability conversion on TiO2 single-crystal surfaces". J. Phys. Chem. B 103, 2188-2194.

25. Takata, Y., Hidaka, S., Masuda, M. & Ito, T., 2003, "Pool boiling on a superhydrophilic surface". IJER 27, 111-119.

26. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y., 2001, "Visible-light photocatalysis in nitrogen-doped titanium oxides". Sci 293, 269-271.

27. Irie, H., Watanabe, Y. & Hashimoto, K., 2003, "Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders". J. Phys. Chem. B 107, 5483-5486.

28. Irie, H., Washizuka, S., Yoshino, N. & Hashimoto, K., 2003, "Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films". ChCom, 1298-1299.

29. Finazzi, E., Di Valentin, C., Selloni, A. & Pacchioni, G., 2007, "First principles study of nitrogen doping at the anatase TiO2 (101) surface". J. Phys. Chem. C. 111, 9275-9282.

30. Umebayashi, T., Yamaki, T., Tanaka, S. & Asai, K., 2003, "Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2". Chem. Lett. 32, 330-331.

31. Ohno, T. et al., 2004, "Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light". Applied Catalysis A: General 265, 115-121.

32. Jimmy, C., 2006, "Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity". ChCom, 1115-1117.

33. Yamaki, T., Sumita, T. & Yamamoto, S., 2002, "Formation of TiO2− xFx compounds in fluorine-implanted TiO2". J. Mater. Sci. Lett. 21, 33-35.

34. Yu, J.C., Zhang, L., Zheng, Z. & Zhao, J., 2003, "Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity". Chem. Mater. 15, 2280-2286.

35. Shi, Q., Yang, D., Jiang, Z. & Li, J., 2006, "Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles". J. Mol. Catal. B: Enzym. 43, 44-48.

36. Irie, H., Washizuka, S. & Hashimoto, K., 2006, "Hydrophilicity on carbon-doped TiO 2 thin films under visible light". Thin Solid Films 510, 21-25.

37. Katsumata, K.-i. et al., 2006, "Photoinduced surface roughness variation in polycrystalline TiO2 thin films". J. Photochem. Photobiol. A: Chem. 180, 75-79.

38. Obata, K., Irie, H. & Hashimoto, K., 2007, "Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light". ChPh 339, 124-132.

39. Irie, H. et al., 2009, "Visible light-sensitive Cu (II)-grafted TiO2 photocatalysts: activities and X-ray absorption fine structure analyses". J. Phys. Chem. C. 113, 10761-10766.

40. Yu, H. et al., 2010, "An efficient visible-light-sensitive Fe (III)-grafted TiO2 photocatalyst". J. Phys. Chem. C. 114, 16481-16487.

41. Houmard, M., Berthomé, G., Joud, J. & Langlet, M., 2011, "Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route". SurSc 605, 456-462.

42. Holtzinger, C. et al., 2012, "Influence of sol composition on natural superhydrophilicity of sol gel–derived TiO2–SiO2 nanocomposite thin films". Emerging Materials Research 1, 127-135.

43. Ren, D. et al., 2004, "Study on the superhydrophilicity of the SiO2-TiO2 thin films prepared by sol-gel method at room temperature". J. Sol-Gel Sci. Technol. 29, 131-136.

44. Anderson, C. & Bard, A.J., 1995, "An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis". The Journal of Physical Chemistry 99, 9882-9885.

45. Gao, X. & Wachs, I.E., 1999, "Titania–silica as catalysts: molecular structural characteristics and physico-chemical properties". Catal. Today 51, 233-254.

46. Murata, C., Yoshida, H., Kumagai, J. & Hattori, T., 2003, "Active sites and active oxygen species for photocatalytic epoxidation of propene by molecular oxygen over TiO2-SiO2 binary oxides". J. Phys. Chem. B 107, 4364-4373.

47. Guan, K., Lu, B. & Yin, Y., 2003, "Enhanced effect and mechanism of SiO 2 addition in super-hydrophilic property of TiO2 films". Surf. Coat. Technol. 173, 219-223.

48. Yu, J. et al., 2001, "The grain size and surface hydroxyl content of super-hydrophilic TiO2/SiO2 composite nanometer thin films". J. Mater. Sci. Lett. 20, 1745-1748.

49. Fu, X., Clark, L.A., Yang, Q. & Anderson, M.A., 1996, "Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2". Environ. Sci. Technol. 30, 647-653.

50. Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T. & Kitagawa, J., 1974, "A new hypothesis regarding the surface acidity of binary metal oxides". Bull. Chem. Soc. Jpn. 47, 1064-1066.

51. Itoh, M., Hattori, H. & Tanabe, K., 1974, "The acidic properties of TiO2-SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butene". JCat 35, 225-231.

52. Fox, M.A. & Dulay, M.T., 1993, "Heterogeneous photocatalysis". Chem. Rev. 93, 341-357.

53. Kamat, P.V., 1993, "Photochemistry on nonreactive and reactive (semiconductor) surfaces". Chem. Rev. 93, 267-300.

54. Amezaga-Madrid, P. et al., 2003, "TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films". J. Photochem. Photobiol. B: Biol. 70, 45-50.

55. Begum, N.S., Ahmed, H.F. & Hussain, O., 2008, "Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique". Bull. Mater. Sci. 31, 741-745.

56. Kuo, C.-S., Tseng, Y.-H., Huang, C.-H. & Li, Y.-Y., 2007, "Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity". J. Mol. Catal. A: Chem. 270, 93-100.

57. Heller, A., 1995, "Chemistry and applications of photocatalytic oxidation of thin organic films". Acc. Chem. Res. 28, 503-508.

58. Hashimoto, K., Irie, H. & Fujishima, A., 2005, "TiO2 photocatalysis: a historical overview and future prospects". Jpn. J. Appl. Phys. 44, 8269.

59. Latthe, S.S., Liu, S., Terashima, C., Nakata, K. & Fujishima, A., 2014, "Transparent, Adherent, and Photocatalytic SiO2-TiO2 Coatings on Polycarbonate for Self-Cleaning Applications". Coatings 4, 497-507.

60. Fujishima, A., Ohtsuki, J., Yamashita, T. & Hayakawa, S., 1986, "Behavior of tumor cells on photoexcited semiconductor surface". Photomed. Photobiol 8, 45-46.

61. Kanai, N. et al., 2004, "Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering". Vacuu 74, 723-727.

62. Liu, Y. et al., 2009, "Natural superhydrophilic TiO2/SiO2 composite thin films deposited by radio frequency magnetron sputtering". JAllC 479, 532-535.

63. Yu, J. & Zhao, X., 2001, "Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol-gel derived TiO2 thin films". MaRBu 36, 97-107.

64. Watanabe, T., Fukayama, S., Miyauchi, M., Fujishima, A. & Hashimoto, K., 2000, "Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass". J. Sol-Gel Sci. Technol. 19, 71-76.

65. Mills, A., Elliott, N., Parkin, I.P., O’Neill, S.A. & Clark, R., 2002, "Novel TiO2 CVD films for semiconductor photocatalysis". J. Photochem. Photobiol. A: Chem. 151, 171-179.

66. Kuo, C.-S., Tseng, Y.-H. & Li, Y.-Y., 2006, "Wettability and superhydrophilic TiO2 film formed by chemical vapor deposition". Chem. Lett. 35, 356-357.

67. Celia, E., Darmanin, T., De Givenchy, E.T., Amigoni, S. & Guittard, F., 2013, "Recent advances in designing superhydrophobic surfaces". JCIS 402, 1-18.

68. Wenzel, R.N., 1936, "Resistance of solid surfaces to wetting by water". Ind. Eng. Chem. 28, 988-994.

69. Oliver, J., Huh, C. & Mason, S., 1980, "An experimental study of some effects of solid surface roughness on wetting". ColSu 1, 79-104.

70. Cassie, A. & Baxter, S., 1944, "Wettability of porous surfaces". Trans. Faraday Society 40, 546-551.

71. Cassie, A., 1948, "Contact angles". Discuss. Faraday Soc. 3, 11-16.

72. Lakshmi, R., Bharathidasan, T., Bera, P. & Basu, B.J., 2012, "Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating". Surf. Coat. Technol. 206, 3888-3894.

73. Xu, L. & He, J., 2012, "Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles". Langmuir 28, 7512-7518.

74. Li, X., Du, X. & He, J., 2010, "Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles". Langmuir 26, 13528-13534.

75. Ding, H., Zhu, C., Zhou, Z., Wan, M. & Wei, Y., 2006, "Hydrophobicity of polyaniline microspheres deposited on a glass substrate". Macromol. Rapid Commun. 27, 1029-1034.

76. Macias-Montero, M. et al., 2012, "Superhydrophobic supported Ag-NPs@ ZnO-nanorods with photoactivity in the visible range". JMCh 22, 1341-1346.

77. Oliveira, S.M., Alves, N.M. & Mano, J.F., 2014, "Cell interactions with superhydrophilic and superhydrophobic surfaces". J. Adhes. Sci. Technol. 28, 843-863.

78. Myint, M.T.Z., Kumar, N.S., Hornyak, G.L. & Dutta, J., 2013, "Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface". Appl. Surf. Sci. 264, 344-348.

79. Duez, C., Ybert, C., Barentin, C., Cottin-Bizonne, C. & Bocquet, L., 2008, "Dynamics of fakir liquids: from slip to splash". J. Adhes. Sci. Technol. 22, 335-351.

80. Wang, J.-J., Wang, D.-S., Wang, J., Zhao, W.-L. & Wang, C.-W., 2011, "High transmittance and superhydrophilicity of porous TiO2/SiO2 bi-layer films without UV irradiation". Surf. Coat. Technol. 205, 3596-3599.

81. Pesonen-Leinonen, E., Kuisma, R., Redsven, I., SJOBERG, A. & Hautala, M., 2006, "Can contact angle measurements be used to predict soiling and cleaning of plastic flooring materials?". Contact angle, wettability and adhesion 4, 203.

82. Cape, J., 1983, "Contact angles of water droplets on needles of Scots pine (Pinus sylvestris) growing in polluted atmospheres". New Phytol., 293-299.

83. Zou, Y., Kizhakkedathu, J.N. & Brooks, D.E., 2009, "Surface modification of polyvinyl chloride sheets via growth of hydrophilic polymer brushes". Macromolecules 42, 3258-3268.

84. Vorotilov, K., Orlova, E. & Petrovsky, V., 1992, "Sol-gel TiO2 films on silicon substrates". Thin Solid Films 207, 180-184.

85. Brinker, C.J. & Scherer, G.W. Sol-gel science: the physics and chemistry of sol-gel processing. (Academic press, 2013).

86. Pierre, A.C. Introduction to sol-gel processing, Vol. 1. (Springer Science & Business Media, 2013).

87. Rahman, I.A. & Padavettan, V., 2012, "Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review". Journal of Nanomaterials 2012, 8.

88. Sivakumar, K., Kumar, V.S., Muthukumarasamy, N., Thambidurai, M. & Senthil, T., 2012, "Influence of pH on ZnO nanocrystalline thin films prepared by sol–gel dip coating method". Bull. Mater. Sci. 35, 327-331.

89. Ilican, S., Yakuphanoglu, F., Caglar, M. & Caglar, Y., 2011, "The role of pH and boron doping on the characteristics of sol gel derived ZnO films". JAllC 509, 5290-5294.

90. Latibari, S.T., Mehrali, M., Mehrali, M., Mahlia, T.M.I. & Metselaar, H.S.C., 2013, "Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method". Energy 61, 664-672.

91. Harraz, F.A., Abdel-Salam, O.E., Mostafa, A.A., Mohamed, R.M. & Hanafy, M., 2013, "Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal". JAllC 551, 1-7.

92. Cushing, B.L., Kolesnichenko, V.L. & O′Connor, C.J., 2004, "Recent advances in the liquid-phase syntheses of inorganic nanoparticles". Chem. Rev. 104, 3893-3946.

93. Lofgreen, J.E. & Ozin, G.A., 2014, "Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica". ChSRv 43, 911-933.

94. Talebian, N., Nilforoushan, M.R. & Maleki, N., 2013, "Ultraviolet to visible-light range photocatalytic activity of ZnO films prepared using sol–gel method: The influence of solvent". Thin Solid Films 527, 50-58.

95. Thongsuriwong, K., Amornpitoksuk, P. & Suwanboon, S., 2013, "Structure, morphology, photocatalytic and antibacterial activities of ZnO thin films prepared by sol–gel dip-coating method". Adv. Powder Technol. 24, 275-280.

96. Lekshmy, S.S., Berlin, I.J., Maneeshya, L. & Joy, K. in IOP Conference Series: Materials Science and Engineering, Vol. 73 012018 (IOP Publishing, 2015).

97. Prochazka, J. et al., 2013, "Dense TiO2 films grown by sol–gel dip coating on glass, F-doped SnO2, and silicon substrates". JMatR 28, 385-393.

98. Lin, H.-J., Yang, T.-S., Wang, M.-C. & Hsi, C.-S., 2014, "Structural and photodegradation behaviors of Fe3+-doping TiO2 thin films prepared by a sol–gel spin coating". JAllC 610, 478-485.

99. Kim, C., Lee, J., Kim, S. & Yoon, J., 2014, "TiO2 sol–gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization". Desalination 342, 70-74.

100. Wei, H.S., Kuo, C.C., Jaing, C.C., Chang, Y.C. & Lee, C.C., 2014, "Highly transparent superhydrophobic thin film with low refractive index prepared by one-step coating of modified silica nanoparticles". J. Sol-Gel Sci. Technol. 71, 168-175.

101. Klein, L.C. Sol-gel optics: processing and applications, Vol. 259. (Springer Science & Business Media, 2013).

102. Zhang, Z., Wang, C.-C., Zakaria, R. & Ying, J.Y., 1998, "Role of particle size in nanocrystalline TiO2-based photocatalysts". J. Phys. Chem. B 102, 10871-10878.

103. Ridley, M.K., Hackley, V.A. & Machesky, M.L., 2006, "Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions". Langmuir 22, 10972-10982.

104. Ishikawa, Y., Aoki, N. & Ohshima, H., 2005, "Colloidal stability of aqueous polymeric dispersions: effect of water insoluble excipients". Colloids Surf. B. Biointerfaces 45, 35-41.

105. Dunphy Guzman, K.A., Finnegan, M.P. & Banfield, J.F., 2006, "Influence of surface potential on aggregation and transport of titania nanoparticles". Environ. Sci. Technol. 40, 7688-7693.

指導教授 李正中(Cheng-chung Lee) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明