參考文獻 |
[1.1]W.R. Grove, “Onvoltaicseriesandthecombinationofgases byplatinum”, PhilosophicalMagazineSeries 3, 14 (1839) pp. 127-130.
[1.2] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3−δon microstructural andelectrical properties of proton conducting Ni–BaCe0.9Y0.1O3−δanodes”, Journal of Alloys and Compounds, 509 (2011) pp. 1157–1162.
[1.3]B. H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Journal of Hydrogen Energy, 37 (2012) pp. 18342-18348.
[1.4] T. Suzuki, S. Sugihara, T. Yamaguchi, H. Sumi, K. Hamamoto, Y. Fujishiro, “Effect of anode functional layer on energy efficiency of solid oxide fuel cells”, Electrochemistry Communications, 13(2011) pp. 959-962.
[1.5] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, “A novel anode supported BaCe0.7Ta0.1Y0.2O3−δelectrolyte membrane for proton-conducting solid oxide fuel cell”, Electrochemistry Communications, 10 (2008) pp. 1598-1601.
[1.6] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, 33 (2008) pp. 2826-2833.
[1.7] Z.H. Chen, R. Rana, W. Zhou, Z.P. Shao, S.M. Liu, ” Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, 52 (2007) pp. 7343-7351.
[1.8] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1−xSrxCo1−yFeyO2.5:A molecular dynamics study”, Solid State Ionics, 177 (2007) pp. 3425–3431.
[1.9] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, ” Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathodes prepared via electroless deposition”, Electrochimica Acta, 53 (2008) pp. 4370-4380.
[1.10] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, 26 (2006) 2827-2832.
[1.11] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a potential cathode for an anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[1.12] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin, N.P. Xu, “Effect of a reducing agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3−δ electrode prepared by electroless deposition technique”, Journal of Power Sources, 186 (2009) pp. 244–251.
[1.13] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−αcomposite cathode for solid oxide fuel cells”, Journal of Power Sources, 204 (2012) pp. 89–93.
[1.14] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, G.Y. Meng, “Intermediate-to-low temperature protonic ceramic membrane fuel cells withBa0.5Sr0.5Co0.8Fe0.2O3-δ–BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, Journal of Power Sources, 186 (2009) pp. 58–61.
[1.15] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, X.Q. Liu, ” Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δfor proton-conducting solid oxide fuel cell cathode”, International Journal of Hydrogen Energy, 35 (2010) pp. 3769–3774.
[1.16] W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, 30 (1997) pp. 93-97.
[1.17]K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, 138 (2000) pp. 91–98.
[1.18]K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, 125 (1999) pp. 355–367.
[1.19] Rinlee Butch Cervera , Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3 − δ by sol–gel method”, Solid State Ionics,178 (2007) pp. 569–574.
[1.20] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[1.21] H. Inaba, H. Tagawa, ” Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) pp. 1- 16.
[1.22] M. Johnsson, P. Lemmens, “Crystallography and Chemistry of Per-ovskites,” Handbook of Magnetism and Advanced Magnetic Media,pp. 2098–106.
[1.23] X.C. Liu, R.Z. Hong, C.S. Tian, “Tolerance factor and the stability discussion of ABO3-type ilmenite”, J Mater Sci : Mater Electron, 20 (2009) pp. 323–327.
[1.24] E. Traversa, E.Fabbri, formerly National Institute for Material Science, Japan.
[1.25] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, 244 (1995) pp. 456-462.
[1.26] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computermodelling tour”, J. Mater. Chem., 10 (2000) pp. 1027-1038.
[1.27] K.D. Kreuer, ” Proton Conductivity: Materials and Applications”, Chem. Mater. 8 (1996) pp. 610-641.
[2.1] D. Li, Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advances materials, 16 (2004) pp.1151-1170.
[3.1] E. Perry Murray, T. Tsai, S. A. Barnett, “A direct-methane fuel cell with a ceria-based anode“, Nature, 400 (1999) pp. 649-651.
[3.2] S.H. Chan, H.K. Ho, Y. Tian, ”Multi-level modeling of SOFC–gas turbine hybrid system”, International Journal of Hydrogen Energy, 28 (2003) pp. 889 – 900.
[3.3] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) pp. 5981–6000.
[3.4] K. Xie, R.Q. Yan, X.Q. Liu, “Stable BaCe0.7Ti0.1Y0.2O3−δproton conductor for solid oxide fuel cells”, Journal of Alloys and Compounds, 479 (2009) pp. L40–L42.
[3.5] I.M. Hung, H.W. Peng, S.L. Zheng, C.P. Lin, J.S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δsolid oxide fuel cell electrolyte”, Journal of Power Sources, 193 (2009) pp. 155–159.
[3.6]Z.P. Shao, S. M. Haile, ” A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) pp. 170-173.
[3.7]L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, ” A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors”, advanced material, 20 (2008) pp. 3280–3283.
[3.8] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, ” H2S Solid oxide fuel cell based on a modified Barium cerate perovskite proton conductor”, Ionics , 15 (2009) pp. 385–388.
[3.9]Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, J.M. Ahn,” Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δas a Potential Cathode for an Anode-supported Proton-conducting Solid-oxide Fuel Cell”, Journal of Power Sources, 180 (2008) pp. 15–22.
[3.10]H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, ”Proton Conduction in Sintered Oxides Based on BaCe03“, Journal of Electrochemical Society, 135 (1988) pp. 529–533.
[3.11] H. Iwahara, ”Technological Challenges in the Application of Proton Conducting Ceramics”, Solid State Ionics, 77 ( 1995) pp. 289–298.
[3.12]H.G. Gu, R. Ran, W. Zhou, Z.P. Shao, ”Anode-supported ScSZ-electrolyte SOFC with whole cell materials from combined EDTA–citrate complexing synthesis process”, Journal of Power Sources, 172 (2007) pp. 704–712.
[3.13] Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ(0.0 ≤ y ≤ 0.8) for fuel cell applications”, Journal of Power Sources, 193 (2009) pp. 400–407.
[3.14] R.S. Gemmen, J. Trembly, “On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell”, Journal of Power Sources, 161 (2006) pp. 1084–1095.
[3.15] Z. Zhong, ”Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems”, Solid State Ionics, 178 (2007) pp. 213–220.
[3.16] M.Y. Gong, X. Liu, J. Trembly, C. Johnson, “Sulfur-tolerant anode materials for solid oxide fuel cell application”, Journal of Power Sources, 168 (2007) pp. 289–298.
[3.17] P. Babilo, T. Uda, S.M. Haile, “Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity”, Materials Research Society, 22 (2007) pp. 1322-1330.
[3.18] J.D. Lu, L. Wang, L.H. Fan, Y.H. Li, L. Dai, H.X. Guo, ” Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres”, Journal Of Rare Earths, 26 (2008) pp. 505–510.
[3.19] Y.Z. Zeng, P.L. Mao, S.P. Jiang, P. Wu, L. Zhang, P. Wu, ” Prediction of Oxygen Ion Conduction from Relative Coulomb Electronic Interactions in Oxyapatites”, Journal of Power Sources, 196 (2011) pp. 4524–4532.
[3.20] C.S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, C.C. Huang, C.L. Tsai, “Thermal Stability of Ba(Zr0.8−xCexY0.2)O2.9 Ceramics in Carbon Dioxide“, Journal of Applied Physics, 105 (2009) p. 103504.
[3.21] R.R. Chien, C.S. Tu, V.H. Schmidt, S.C. Lee, C.C. Huang, ” Synthesis and characterization of proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 ceramics”, Solid State Ionics, 181 (2010) pp. 1251–1257.
[3.22] R. Q. Long, Y. P. Huang and H. L. Wan, ” Surface Oxygen Species Over Cerium Oxide and Their Reactivities with Methane and Ethane by Means of in situ Confocal Microprobe Raman Spectroscopy”, Journal Of Raman Spectroscopy, 28 (1997) pp. 29–32.
[3.23] M. Aghazadeh, A. Nozad, H. Adelkhani, M. Ghaemi, ” Synthesis of Y2O3 Nanospheres via Heat-Treatment of Cathodically Grown Y(OH)3 in Chloride Medium”, Journal of The Electrochemical Society, 157(2010) pp. D519–D522.
[3.24] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics,77 (1995) pp. 289-298.
[3.25]H. Iwahara, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., 135 (2) (1988) pp. 529–533.
[3.26]H. Iwahara, “High temperature solid electrolyte fuel cells using perovskite type oxide based on BaCeO3”, J. Electrochem. Soc., 137 (2) (1990) pp. 462–465.
[4.1]E. Zhao, Z. Jia, L. Zhao, Y.P. Xiong, C.W. Sun, M. E. Brito,’’One dimensional La0.8Sr0.2Co0.2Fe0.8O3-δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells”, Journal of Power Sources, 219 (2012) pp. 133–139.
[4.2] L.Q. Fan, Y.P. Xiong, L.b. Liu, Y.W. Wang, H. Kishimoto, K. Yamaji, T. Horita, ” Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells”, Journal of Power Sources, 265 (2014) pp. 125–131.
[4.3] J.G. Lee, M.G. Park, J.H. Park, Y.G. Shul, “Electrochemical characteristicsofelectrospunLa0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O1.95 cathode”, Ceramics International, 40 (2014) pp. 8053–8060.
[4.4] E.Q. Zhao, C. Ma, W. Yang, Y.P. Xiong, J.Q. Li, C.W. Sun, “Electrospinning La0.8Sr0.2Co0.2Fe0.8O3-δ tubes impregnated with Ce0.8Gd0.2O1.9 nanoparticles for an intermediate temperature solid oxide fuel cell cathode”, International Journal of hydrogen energy, 38 (2013) pp. 6821–6829.
[4.5] N.T. Hieua, J. Park, B. Tae, “Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells”, Materials Science and Engineering B, 177 (2012) pp. 205– 209.
[4.6]L. Bi, E. Fabbri, E. Traversa, “ Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, 16 (2012) pp. 37–40.
[4.7] S.C. He, H.L. Dai, G.F. Cai, H. Chen, L.C. Guo, ” Optimization of La0.75Sr0.25Cr0.5Mn0.5O3-δ-Ce0.8Sm0.2O1.9 compositionally graded anode functional layer”, Electrochimica Acta, 152 (2015) pp. 155–160.
|