博碩士論文 101222031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.14.114.210
姓名 陳韋佳(Wei-Chia Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 皮膚振動模態之顯微觀測
(Skin vibration through optical microscopy)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 儘管人體在靜態平躺時,不同尺度的振動以非線性耦合的方式依舊存在。我們提出用非接觸式的光學顯微鏡來直接觀看人體前手臂的皮膚位移,寬廣的時間及空間解析度方便我們了解以下三個議題: (1)基本人體皮膚之振動模態 (2)判定相關的振動源,融合中西醫觀點,潛在振動源如呼吸、心跳、脈搏、震顫還有穴位振動皆受驗證 (3) 振動模態的耦合。前手臂被分成遠離動脈區的振動和動脈區的振動,遠離動脈區的振動模態可從頻譜分析分成低頻帶、中頻帶、高頻帶,各頻帶的主要信號分別是源自由呼吸引發的0.2赫茲、由心跳引發的1赫茲和其諧波至大約8赫茲、一個中心大約在10赫茲小丘狀的寬頻,經過帶通濾波後可看出中頻和高頻的信號彼此相位鎖定可認定兩者皆由心臟跳動產生的振動。用particle image velocimetry (PIV) 檢視空間振動模態發現整體近乎一致,簡稱為全域振動,穴道及經絡並未產生振動的奇異點或通道。在動脈區的振動透過PIV找出週期性收縮的奇異點,得出此區的振動是由前述的全域振動和動脈引發的區域振動所合成,分析動脈振動的頻譜發現,相較全域振動,只存在中頻帶的由脈膊引發的1赫茲和其諧波,並且頻率皆和全域振動一致。其時域圖中則可看出和呼吸週期一致的振幅調制。
摘要(英) Human body is an interesting complex network exhibiting multi-scales of nonlinearly coupled mechanical vibrations, even for a resting subject. For example, respiration, heartbeat, muscle tremor, and local artery pulsation are the possible sources inducing global or local mechanical vibrations.
In this work, skin vibrations of the different regions on the forearms of resting subjects, are explored, using a simple noncontact method, direct visualizing skin displacement through optical video microscopy by digital tracking skin tracer motions. The measurement provides a good bandwidth up to a few tens of Hz, and spatial resolution down to 1 um. The skin velocity field in the viewing plane can also be obtained from sequential images through particle image velocimetry (PIV). By comparing the vibrations of a pair of separated regions from two synchronized video-microscopes, the following interesting issues are addressed: (i) What are the generic behaviors and differences of skin vibrations of different regions, especially around radial artery, acupuncture points along the lung meridian and sham points? (ii) Are acupuncture points the singular points for skin vibrations? (iii) What are the origins for those skin vibrations, and how are different modes correlated?
It is found that, except the radial artery region, all other tested regions in forearms show similar vibration waveforms, originated from the global mechanical vibration induced by heartbeat and respiration in the trunk, regardless of whether there are nearby meridians. The global vibration contains a low-frequency respiratory mode around 0.2 Hz, and a middle-frequency band with distinguished fundamental heartbeat around 1 Hz and its few higher order harmonics, on a floor following power law decay. Moreover, a wide band bump centered around 10 Hz with a few Hz band width, out of the power law decay spectrum floor is observed. The band pass filtered 10 Hz high-frequency waveform is modulated by the heartbeat. The above observations suggest that heartbeat and respiration are the two major sources of trunk vibration and consequently global vibrations in upper limbs. Around the radial artery, superposed on the global vibration, arterial pulses induce additional local vibration. It only contains the middle-frequency modes from about 1 Hz to its harmonics up to a few Hz, excluding low frequency respiration and the 10 Hz high-frequency modes. The middle-frequency vibration induced by artery is phase-locked and frequency-locked with the middle-frequency global vibration, and is modulated by the slow respiration mode.
關鍵字(中) ★ 皮膚振動
★ 顯微
★ 呼吸
★ 心跳
★ 脈搏
★ 穴道
★ 經絡
★ 振動
★ 非線性
關鍵字(英) ★ skin vibration
★ microscopy
★ respiration
★ heartbeat
★ arterial pulse
★ acupuncture point
★ meridian
★ vibration
★ nonlinear
論文目次 1 Introduction 1
2 Background 4
2.1 Sources of body movement at rest . . . . . . . . . . . . . . . . 4
2.1.1 Respiration and respiratory rate . . . . . . . . . . . . . 4
2.1.2 Heartbeat and heart rate . . . . . . . . . . . . . . . . . 5
2.1.3 Arterial pulse . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3.1 Definition and how it relates to heart . . . . . 5
2.1.3.2 Regulation of blood pressure . . . . . . . . . . 6
2.1.3.3 Relationship between arterial pulse waveform and cardiac cycle . . . . . . . . . . . . . . . . 6
2.1.3.4 Pulse wave velocity (PWV) . . . . . . . . . . 7
2.1.4 Tremor . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Coupling among sources . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Respiration vs. heartbeat . . . . . . . . . . . . . . . . 8
2.2.2 Respiration vs. pulse pressure . . . . . . . . . . . . . . 9
2.3 Meridian system . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Anatomy of meridian . . . . . . . . . . . . . . . . . . . 10
2.3.2 Anatomy of acupuncture points and sham points . . . 10
2.3.3 Properties of acupuncture points . . . . . . . . . . . . 11
2.3.4 Acupuncture needle vibration . . . . . . . . . . . . . . 11
2.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Respiratory rate (RR) . . . . . . . . . . . . . . . . . . 11
2.4.2 Heart rate (HR) . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Arterial pulse waveform . . . . . . . . . . . . . . . . . 12
2.4.3.1 Invasive . . . . . . . . . . . . . . . . . . . . . 12
2.4.3.2 Noninvasive . . . . . . . . . . . . . . . . . . . 13
2.4.3.3 Pulse wave velocity (PWV) . . . . . . . . . . 13
2.4.4 Tremor . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Experiment 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Vibrations away from the artery . . . . . . . . . . . . . 15
3.1.2 Vibrations near the artery . . . . . . . . . . . . . . . . 16
3.2 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Data process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.1 Cross-correlation . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Fast Fourier transform (FFT) and FFT filter . . . . . . 20
3.5.3 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.4 Particle image velocimetery (PIV) . . . . . . . . . . . . 21
4 Results and discussions 22
4.1 Vibrations away from the radial artery . . . . . . . . . . . . . 22
4.1.1 Temporal evolution common properties of intrinsic modes in spectra . . . . . . . . . . . . . . . . . . . . . 22
4.1.2 Temporal evolution mode classification . . . . . . . . . 24
4.1.3 Identification and couplings of sources . . . . . . . . . 26
4.1.4 Spatial propagation phase difference among three spots 27
4.1.5 Spatial evolution of global vibration . . . . . . . . . . . 28
4.1.6 Difference between X and Y -direction in spectra and 2D plane . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.7 Meridian association . . . . . . . . . . . . . . . . . . . 29
4.1.8 People variation . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Vibrations near the radial artery at the wrist . . . . . . . . . . 33
4.2.1 Common mode and local vibration . . . . . . . . . . . 33
4.2.2 Extraction of local vibration . . . . . . . . . . . . . . . 34
4.2.3 Local vibration vs. global vibration . . . . . . . . . . . 34
4.2.4 Source couplings . . . . . . . . . . . . . . . . . . . . . 36
5 Conclusion 37
參考文獻 [1] Vital signs, http://en.wikipedia.org/wiki/Vital signs
[2] Grossman P1, Taylor EW, Biol Psychol 74(2), 263-85 (2007)
[3] Marik PE1, Cavallazzi R, Vasu T, Hirani A, Crit Care Med 37(9), 2642-7 (2009)
[4] A. C. Guo, Huang Di Nei Jing Su Wen, People’s Health Publishing House (2013)
[5] Chung-Shing Hu, Yu-Feng Chung, Cheng-Chang Yeh, and Ching-Hsing Luo, Evidence-Based Complementary and Alternative Medicine 745127 (2012)
[6] Jih-Huah Wu, Wen-Li Lee, Yun-Parn Lee, Ching-Huang Lin, Ji-Yi Chiou, Chuan-Fu Tai, Joe-Air Jiang, Proc. of SPIE Vol. 81330U-1 (2011)
[7] Pinheiro E, Postolache O, Gir˜ao P, The Open Biomedical Engineering Journal 4, 201–216 (2010)
[8] Edward S. Yang, Pei-Wen Li, Bernd Nilius, Geng Li, Eur J Physiol 462, 645 – 653 (2011)
[9] Nikita A Vizniak, http://prohealthsys.com/site/resources/assessment/physical-assessment/vital-signs/vital signs table/
[10] Chuan-Yi Liu, Ching-Chuan Wei, and Pei-Chen Lo, Evid Based Complement Alternat Med (2009)
[11] Mattace-Raso F, Hofman A, Verwoert GC, Wittemana JC, Wilkinson I, Cockcroft J, McEniery C, Yasmin, Laurent S, Boutouyrie P, Bozec E, Hansen TW, Torp-Pedersen C, Ibsen H, Jeppesen J, Vermeersch SJ, Rietzschel E, De Buyzere M, Gillebert TC, Van Bortel L, Segers P, Vlachopoulos C, Aznaouridis C, Stefanadis C, Benetos A, Labat C, Lacolley P, Stehouwer C, Nijpels G, Dekker JM, Stehouwer C, Ferreira I, Twisk JW, Czernichow S, Galan P, Hercberg S, Pannier B, Gu´erin A, London G, Cruickshank JK, Anderson SG, Paini A, Agabiti Rosei E, Muiesan ML, Salvetti M, Filipovsky J, Seidlerova J, and Dolejsova M, European Heart Journal 31, 2338–2350 (2010)
[12] J. H. McAuley and C. D. Marsden, Brain 123, 1545-1567 (2000)
[13] Adriano O. Andrade, Adriano Alves Pereira, Maria Fernanda Soares de Almeida, Guilherme Lopes Cavalheiro, Ana Paula Souza Paix˜ao, Sheila Bernardino Fenelon and Valdeci Carlos Dionisio, edited by Adriano Andrade (Human Tremor: Origins, Detection and Quantification, 2013)
[14] Gallash E1, Kenner T, Scripta Medica (Brno) 71(4), 165-70 (1998)
[15] Shelley KH1, Jablonka DH, Awad AA, Stout RG, Rezkanna H, Silverman DG, Anesth Analg 103(2), 372-7 (2006)
[16] L. Fei, H. C. Cheng, D. H. Cai, S. X. Yang, J. R. Xu, E. Y. Chen,R. S. Dang, G. H. Ding, X. Y. Shen, Y. Tang, China academic journal electronic publishing house Vol. 43, issue 6 (1998)
[17] Helene M. Langevin, David L. Churchill, Junru Wu, Gary J. Badger, Jason A. Yandow, James R. Fox, and Martin H. Krag, FASEB J. 874 Vol. 16 (2002)
[18] Helene M. Langevin and Jason A. Yandow, The Anatomical Record (New Anat.) 269, 257–265 (2002)
[19] L. Fei, G. H. Ding, X. Y. Shen, Q. B. Gu, E. Y. Chen, Bulletin of Advanced Technology Research Vol. 5 No.3 (2011)
[20] Masimo Americas, http://www.masimo.com/pdf/rra/rra whitepaper.pdf
[21] Richard E Klabunde, Cardiovascular Physiology Concepts (2011)
[22] Epson, http://global.epson.com/innovation/engineer/pulse sensing.html
[23] Hermeling, E., Measurement of local pulse wave velocity: Effects of signal processing on precision, Ultrasound in Medicine and Biology 33(5),p.774-781 (2007)
[24] Steven Morrison, Karl M. Newell, Clinical Neurophysiology 111, 651-663 (2000)
[25] W. Thielicke and E. J. Stamhuis, http://PIVlab.blogspot.com
指導教授 伊林(Lin I) 審核日期 2015-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明