參考文獻 |
[1] W. B. Veldkamp, G. J. Swanson, S. A. Gaither, C.-L. Chen, and T. R. Osborne, “Binary optics: a diffraction analysis,” MIT Lincoln Laboratory Project Rep. ODT 20, (MIT Lincoln Laboratory, Lexington, Mass., 1989).
[2] M. A. Heald and J. B. Marion, Classical Electrical Radiation, 3rd ed. (Saunders Colledge Publishing, 1995), Chap. 12.
[3] Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 2002).
[4] S. Silver, “Microwave aperture antennas and diffractions,” J. Opt. Soc. Am 52, 131-139 (1962).
[5] E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am A 19, 702-715 (2002).
[6] M. Neviere and P. Vincent, “Differential theory of gratings: answer to an objection on its validity for TM polarization,” J. Opt. Soc. Am 5, 1522-1524 (1988).
[7] J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Act. 26, 69 (1979).
[8] Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Roy.
A 79, 399-416(1907).
[9] L. Solymar and D. J. Cooke, “Volume holography and volume gratings,” Academic Press, London (1981).
[10] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
[11] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
[12] E.g., C. L. Liu and J. W. S. Liu, Linear systems Analysis (McGraw-Hill, New York, 1975).
[13] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1078 (1995).
[14] A. Nesci, R. Dandliker, M. Salt, and H. P. Herzig, “Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution,” Opt. Commun. 205, 229-238 (2002).
[15] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[16] D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154-1167 (1993).
[17] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695-2706 (1994).
[18] L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993).
[19] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
[20] R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761-763 (1996).
[21] M. Bass, ed., Handbook of Optics, Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, New York, 1995), Vol 2.
[22] F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 18, 1513-1515 (1996).
[23] R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Soc. Am. A 14, 1627-1636 (1997).
[24] L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Philos. Mag. 34, 481-502 (1892).
[25] J. C. Maxwell Garnett, “On colours in metal glasses, in metallic films, and in metallic solutions,” Philos. Soc. London 205, 237-287 (1906).
[26] S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466-475 (1956).
[27] M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705-708.
[28] W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6, 865-867 (1953).
[29] J. M. Corless and M. W. Kaplan, “Structural interpretation of the birefringence gradient in retinal rod outer segments,” Biophys. J. 26, 543-556 (1979).
[30] R. Oldenbourg and T. Ruizsds6, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195-205 (1989).
[31] R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, and D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289-312 (1982).
[32] H. C. Hsu, “Design and Fabrication of High Efficient Planer Polarizing Beam Splitter for Integrated Lightguide Polarization Converter,” 國立交通大學光電科學研究所碩士論文, (2002).
[33] R. C. Tyan, P. C. Sun, A. A. Salvekar, H. P. Chou, C. C. Cheng, F. Xu, A. Scherer, and Y. Fainman, “Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals,” in Quantum Optoelectronics of 1997 OSA Technical Digest Series 9, 3537 (1997).
[34] R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag Berlin Heidelberg New York 1980), pp. 159-173.
[35] A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068-2075 (2001).
[36] L. Pajewski, R. Borghi, G. Schettini, F. Frezza, and M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898-5905 (2001). |