博碩士論文 92226032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.145.64.245
姓名 鄭凱元(Kai-Yuan Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 次微米週期性結構之嚴格繞射光學模擬與設計
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的目的在於以嚴格繞射理論來模擬來分析微米以下的週期性光柵的繞射特性,並運用來設計次微米繞射光學元件。
論文內容主要可分為兩大部分:
(一) 在理論上以馬克斯威爾方程出發,以向量繞射理論分析精細結構光柵的繞射特性。
(二) 在應用上以次微米週期性光柵的特性,設計可見光波段的偏振分光器。
論文目次 第一章 緒論 1
1-1 繞射的發展 1
1-2 繞射光學元件 2
1-3 繞射光學元件的電磁分析 3
1-4 論文大綱與安排 4
第二章 光柵的繞射電磁理論 5
2-1 TE的單層光柵平面繞射電磁理論 5
2-2 TE的多層光柵平面繞射電磁理論 15
2-3 TM的單層光柵平面繞射電磁理論 18
2-4 TM的多層光柵平面繞射電磁理論 26
第三章 個別的光柵電磁理論所模擬之平面繞射結果 31
3-1 單層光柵的分析結果 31
3-1.1 無吸收之電介質材料 31
3-1.2 有吸收之金屬材料 37
3-2 多層光柵的分析結果 45
3-2.1 無吸收之電介質材料 45
3-2.2 有吸收之金屬材料 50
第四章 週期結構用於偏振分光器之設計 56
4-1 有效介質理論 56
4-2 傳統偏振分光器 63
4-3 可見光波段之次微米週期性結構偏振分光器 65
第五章 結論 78
參考資料 79
中英文對照表 82
參考文獻 [1] W. B. Veldkamp, G. J. Swanson, S. A. Gaither, C.-L. Chen, and T. R. Osborne, “Binary optics: a diffraction analysis,” MIT Lincoln Laboratory Project Rep. ODT 20, (MIT Lincoln Laboratory, Lexington, Mass., 1989).
[2] M. A. Heald and J. B. Marion, Classical Electrical Radiation, 3rd ed. (Saunders Colledge Publishing, 1995), Chap. 12.
[3] Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 2002).
[4] S. Silver, “Microwave aperture antennas and diffractions,” J. Opt. Soc. Am 52, 131-139 (1962).
[5] E. N. Glytsis, “Two-dimensionally-periodic diffractive optical elements: limitations of scalar analysis,” J. Opt. Soc. Am A 19, 702-715 (2002).
[6] M. Neviere and P. Vincent, “Differential theory of gratings: answer to an objection on its validity for TM polarization,” J. Opt. Soc. Am 5, 1522-1524 (1988).
[7] J. R. Andrewartha, J. R. Fox, and I. J. Wilson, “Resonance anomalies in the lamellar grating,” Opt. Act. 26, 69 (1979).
[8] Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Roy.
A 79, 399-416(1907).
[9] L. Solymar and D. J. Cooke, “Volume holography and volume gratings,” Academic Press, London (1981).
[10] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451-455 (1983).
[11] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
[12] E.g., C. L. Liu and J. W. S. Liu, Linear systems Analysis (McGraw-Hill, New York, 1975).
[13] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1078 (1995).
[14] A. Nesci, R. Dandliker, M. Salt, and H. P. Herzig, “Measuring amplitude and phase distribution of fields generated by gratings with sub-wavelength resolution,” Opt. Commun. 205, 229-238 (2002).
[15] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
[16] D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154-1167 (1993).
[17] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt. 33, 2695-2706 (1994).
[18] L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184-1189 (1993).
[19] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
[20] R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21, 761-763 (1996).
[21] M. Bass, ed., Handbook of Optics, Devices, Measurements, and Properties, 2nd ed. (McGraw-Hill, New York, 1995), Vol 2.
[22] F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 18, 1513-1515 (1996).
[23] R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Soc. Am. A 14, 1627-1636 (1997).
[24] L. Rayleigh, “On the influence of obstacles arranged in rectangular order upon the properties of a medium,” Philos. Mag. 34, 481-502 (1892).
[25] J. C. Maxwell Garnett, “On colours in metal glasses, in metallic films, and in metallic solutions,” Philos. Soc. London 205, 237-287 (1906).
[26] S. M. Rytov, “The electromagnetic properties of finely layered medium,” Sov. Phys. JETP 2, 466-475 (1956).
[27] M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980), pp. 705-708.
[28] W. L. Bragg and A. B. Pippard, “The form birefringence of macromolecules,” Acta Crystallogr. 6, 865-867 (1953).
[29] J. M. Corless and M. W. Kaplan, “Structural interpretation of the birefringence gradient in retinal rod outer segments,” Biophys. J. 26, 543-556 (1979).
[30] R. Oldenbourg and T. Ruizsds6, “Birefringence of macromolecules: Wiener’s theory revisited, with applications to DNA and tobacco mosaic virus,” Biophys. J. 56, 195-205 (1989).
[31] R. C. McPhedran, L. C. Botten, M. S. Craig, M. Neviere, and D. Maystre, “Lossy lamellar gratings in the quasistatic limit,” Opt. Acta 29, 289-312 (1982).
[32] H. C. Hsu, “Design and Fabrication of High Efficient Planer Polarizing Beam Splitter for Integrated Lightguide Polarization Converter,” 國立交通大學光電科學研究所碩士論文, (2002).
[33] R. C. Tyan, P. C. Sun, A. A. Salvekar, H. P. Chou, C. C. Cheng, F. Xu, A. Scherer, and Y. Fainman, “Subwavelength Multilayer Binary Grating Design for Implementing Photonic Crystals,” in Quantum Optoelectronics of 1997 OSA Technical Digest Series 9, 3537 (1997).
[34] R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag Berlin Heidelberg New York 1980), pp. 159-173.
[35] A. G. Lopez and H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068-2075 (2001).
[36] L. Pajewski, R. Borghi, G. Schettini, F. Frezza, and M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898-5905 (2001).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2005-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明