參考文獻 |
Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16(1), 125-127.
Brown, P. J. (1977). Centering and scaling in ridge regression. Technometrics 19(1), 35-36.
Chuang, S. C. and Hung, Y. C. (2010). Uniform design over general input domains with applications to target region estimation in computer experiments. Computational Statistics & Data Analysis 54(1), 219-232.
Cornell, J. A. (2011). A primer on experiments with mixture. Hoboken, N. J.: Wiley.
Dempster, A. P., Schatzoff, M. and Wermuth, N. (1977). A simulation study of alternatives to ordinary least squares. Journal of the American Statistical Association 72, 77-91.
Emura, T., Chen Y. H. and Chen H. Y. (2012). Survival prediction based on compound covariate under cox proportional hazard models. PLoS ONE 7, DOI: 10.1371/journal.pone.0047627.
Emura, T. and Chen, Y. H. (2014). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical Methods in Medical Research, DOI: 10.1177/0962280214533378.
Gibbons, D. G. (1981). A simulation study of some ridge estimators. Journal of the American Statistical Association 76, 131-139.
Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
Hoerl, A. E., Kennard, R. W. and Baldwin K. F. (1975). Ridge regression: some simulations, Communications in Statistics 4, 105-123.
Hsu, H.-L. (2003). Robust D-optimal designs for mixture experiments in Scheffé models. Master thesis, Department of Applied Mathematics, National Sun Yat-sen University.
Jang, D.-H. and Anderson-Cook C. M. (2010). Fraction of design space plots for evaluating ridge estimators in mixture experiments. Quality and Reliability Engineering International 27, 27-34.
Jang, D.-H. and Anderson-Cook C. M. (2014). Visualization approaches for evaluating ridge regression estimators in mixture and mixture-process experiments. Quality and Reliability Engineering International. DOI: 10.1002/qre.1683.
Jimichi, M. and Inagaki, N. (1993). Centering and scaling in ridge regression. Statistical Science and Data Analysis 3, 77-86.
Jimichi, M. (2005). Improvement of regression estimators by shrinkage under multicollinearity and its feasibility. Ph.D. Thesis. Osaka University: Japan.
Li, Y. and Yang, H. (2010). A new Liu-type estimator in linear regression model. Statistical Papers 53, 427-437.
Liu, K. (1993). A new class of biased estimate in linear regression. Communications in Statistics – Theory and Methods 22, 393-402.
Liu, K. (2003). Using Liu-type estimator to combat collinearity. Communications in Statistics – Theory and Methods 32, 1009-1020.
Mazerolle, M. J. (2014). AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-1.http://CRAN.R-project.org/package=AICcmodavg.
McLean, R. A. and Anderson, V. L. (1966). Extreme Vertices Design of Mixture Experiments. Technometrics 8(3), 447-454.
Montgomery, D. C., Peck, E. A. and Vining G. G. (2012). Introduction to Linear Regression Analysis. New Jersey: Wiley, 2012. Print.
Sakallıoğlu, S. and Kaçıranlar, S. (2006). A new biased estimator on ridge estimation. Statistical Papers 49, 669-689.
Theobald, C. M. (1973). Generalizations of mean square error applied to ridge regression. Journal of the Royal Statistical Society. Series B (Methodological) 36, 103-106.
Tukey, J. W. (1993). Tightening the clinical trial. Controlled Clinical Trials 14, 266-285.
Wong, K. Y. and Chiu, S. N. (2015). An iterative approach to minimize the mean squared error in ridge regression. Computational Statistics. DOI: 10.1007/s00180-015-0557-y.
Woods, H., Steinour, H. H. and Starke, H. R. (1932) Effect of composition of Portland cement on heat evolved during hardening. Industrial Engineering and Chemistry 24, 1207-1214.
Yang, S. P. (2014). A class of generalized ridge estimator for high-dimensional linear regression. Master thesis, National Central University Electronic Theses & Dissertations.
|