博碩士論文 102522070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.116.14.48
姓名 李順安(Shun-An Lee)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於遺忘曲線理論之複習提醒偵測系統開發與實作:以均一教育平台為例
(Development and implementation of a review reminder system based on forgetting curve: A case study on Junyi Academy)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大規模開放式線上課程 (MOOCs) 是最近國內外興起的一種數位學習模式,在台灣則有均一教育平台等網站提供大規模開放式線上課程。學生在均一等MOOCs平台上學習的內容若不進行複習等重複的學習和記憶,可能會因為時間久了等因素而遺忘,然而均一教育平台尚未有替學生主動安排複習時機的機制,學生要在什麼時候進行複習是讓學生自行決定,若在學習過後很長一段時間才複習,可能已幾乎遺忘學過的內容,使得回憶需要更多的時間。故本研究提出一個複習提醒系統,根據學生在學習時的表現,推測學習者對學習內容的遺忘曲線,並據此決定未來複習的時間與複習的內容。本研究使用基於科技接受模型2 (TAM2) 的研究模型探討使用本系統的使用者行為,實驗結果顯示工作關聯性、產出品質、成果展示性會正向影響使用者對系統的認知有用性,認知易用性、認知有用性會正面影響使用者對系統的使用意圖。而主觀規範與使用意圖、主觀規範與認知有用性、認知易用性與認知有用性則因為兩變項間彼此沒有達到顯著相關,因此顯著關係並不成立。
摘要(英) Massive open online courses (MOOCs) offer schools around the world an innovative online learning experience to students; in Taiwan, there exists Junyi Academy and other MOOCs providers. While students will forget what they learn on Junyi Academy or other MOOCs platform if review process is not performed after a period after they finished learning, Junyi Academy has yet have a mechanism knowing and notifying student when a review is required. Thus, this study proposed a review reminder system, which determines times, and periods of reviews expected for students learning on MOOCs platform, this system schedules review notification and generates review content after students’ finished learning activity. A research model adapted from TAM2 used to explain acceptance of the system. The results partially confirm the model: job relevance, output quality, result demonstrability positively impact on perceived usefulness, while perceived ease of use, perceived usefulness positively influence intention of users toward the system.
關鍵字(中) ★ 大規模開放式線上課程
★ 科技接受模型
關鍵字(英) ★ MOOCs
★ Technology Acceptance Model
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 iv
表目錄 v
一、緒論 1
二、文獻探討 3
2-1大規模開放式線上課程 (MOOCs) 3
2-2遺忘曲線理論 7
2-3科技接受模型 9
2-3-1科技接受模型 9
2-3-3科技接受模型2 10
三、複習提醒偵測系統 13
3-1開發環境建置 13
3-2系統規劃 13
3-3系統架構 15
3-4系統操作過程 16
四、研究方法 21
4-1研究模型與假說 21
4-2科技接受度問卷 23
五、結果與討論 25
5-1描述性統計 25
5-2相關分析 26
5-3迴歸分析 28
六、結論 34
參考文獻 35
參考文獻 Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision sciences, 28(3), 557-582.
Amoako-Gyampah, K. (2007). Perceived usefulness, user involvement and behavioral intention: an empirical study of ERP implementation. Computers in Human Behavior, 23(3), 1232-1248.
Bahrick, H. P. (1979). Maintenance of knowledge: Questions about memory we forgot to ask. Journal of Experimental Psychology: General, 108, 296-308.
Bahrick, H. P., & Phelps, E. (1987). Retention of Spanish vocabulary over 8 years. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 344-349.
Baturay, M. H. (2015). An Overview of the World of MOOCs, Procedia - Social and Behavioral Sciences, 174, 427-433.
Belanger, Y., & Thornton, J. (2013). Bioelectricity: A quantitative approach Duke University’s first MOOC.
Brown, G., Widing, R. E. II, & Coulter, R. L. (1991). Customer evaluation of retail salespeople utilizing the SOCO scale: Replication, extension, and application. Journal of Academy of Marketing Science, 9, 347-351.
Chang, I. C., Li, Y. C., Hung, W. F., & Hwang, H. G. (2005). An empirical study on the impact of quality antecedents on tax payers′ acceptance of Internet tax-filing systems, Government Information Quarterly, 22(3), 389-410.
Chen, C. M., & Chunga, C. J. (2008). Personalized mobile English vocabulary learning system based on item response theory and learning memory cycle. Computers & Education, 51, 624-645.
Chen, X., Barnett, D. R., & Stephens, C. (2013). Fad or future: The advantages and challenges of massive open online courses (MOOCs). In Research-to Practice Conference in Adult and Higher Education (pp. 20-21).
Chismar, W. G., & Wiley-Patton, S. (2002). Test of the technology acceptance model for the internet in pediatrics. Proceedings of the AMIA Symposium, 155-159.
Chiu, T. K., Wang, T. I., Fu, J. H., Hsieh, T. C., Su, C. Y., & Tsai, K. H. (2009, July). Using comprehensive memory cycle updating in extensive reading. In Advanced Learning Technologies, 2009. ICALT 2009. Ninth IEEE International Conference on (pp. 666-668). IEEE.
Chuang, Y. H., & Tsao, C.W. (2013). Enhancing nursing students′ medication knowledge: The effect of learning materials delivered by short message service, Computers & Education, 61, 168-175.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS quarterly, 189-211.
Daniel, J. (2012). Making sense of MOOCs: Musings in a maze of myth, paradox and possibility. Journal of interactive Media in education, 2012(3), Art-18.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of applied social psychology, 22(14), 1111-1132.
Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International journal of man-machine studies, 38(3), 475-487.
Dawes, J. (2008). Do Data Characteristics Change According to the number of scale points used? An experiment using 5-point, 7-point and 10-point scales, International Journal of Market Research, 50(1), 61-77.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Ford, N., & Chen, S. Y. (2000). Individual differences, hypermedia navigation, and learning: an empirical study. Journal of educational multimedia and hypermedia, 9(4), 281-311.
Fry, J. P., & Neff, R. A. (2009). Periodic Prompts and Reminders in Health Promotion and Health Behavior Interventions: Systematic Review. Journal of Medical Internet Research, 11(2), e16.
Hartwick, J., & Barki, H. (1994). Explaining the role of user participation in information system use. Management science, 40(4), 440-465.
Hinkin, T. R. (1995). A review of scale development practices in the study of organizations. Journal of management, 21(5), 967-988.
Ho, H. F. (2005). The method of automatic adjusting the timing of reviewing based on a microprocessor build-in device for user to memory strings, 092134253.
Kelman, H. C. (1958). Compliance, identification, and internalization: Three processes of attitude change. Journal of conflict resolution, 51-60.
Kettanurak, V., Ramamurthy, K., & Haseman, W. (2001). User attitude as a mediator of learning performance improvement in an interactive multimedia environment: an empirical investigation of the degree of interactivity and learning styles, International Journal of Human-Computer Studies, 54, 541-583.
Liang, H., Xue, Y., & Byrd, T. A. (2003). PDA usage in healthcare professionals: testing an extended technology acceptance model, International Journal of Mobile Communications, 1(4), 372-389.
Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International journal of information management, 20(3), 197-208.
Margaryan, A., Bianco, M., & Littlejohn, A. (2015). Instructional quality of Massive Open Online Courses (MOOCs), Computers & Education, 80, 77-83.
Matheson, E. C., Derouin, A., Gagliano, M., Thompson, J. A., & Blood-Siegfried, J. (2014). Increasing HPV Vaccination Series Completion Rates via Text Message Reminders, Journal of Pediatric Health Care, 28, e35-e39.
Meister, J. (2013). How MOOCs Will Revolutionize Corporate Learning And Development. Forbes. Retrived from http://www.forbes.com/sites/jeannemeister/2013/08/13/how-moocs-will-revolutionize-corporate-learning-development/
Michael F., Khan, M. M. H., & Buck R. (2015). A study of users’ experiences and beliefs about software update messages, Computers in Human Behavior, 51, 504-519.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
Preston, C. C., & Colman, A. M. (2000). Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences, Acta Psychologica, 104(1), 1-15.
Runquist, W. (1983). Some effects of remembering on forgetting. Memory & Cognition, 11, 641-650.
Saadé, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & Management, 42(2), 317-327.
Seddon, P., & Kiew, M. Y. (1996). A partial test and development of DeLone and McLean′s model of IS success. Australasian Journal of Information Systems, 4(1).
Shebilske, W. L., Goettl, B. P., Corrington, K., & Day, E. A. (1999). Interlesson spacing and task-related processing during complex skill acquisition. Journal of Experimental Psychology: Applied, 5(4), 413-437.
Son, H., Park, Y., Kim, C., & Chou, J. S. (2012). Toward an understanding of construction professionals′ acceptance of mobile computing devices in South Korea: An extension of the technology acceptance model, Automation in Construction, 28, 82-90.
Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS quarterly, 561-570.
Teo, T. (2010). Examining the influence of subjective norm and facilitating conditions on the intention to use technology among pre-service teachers: a structural equation modeling of an extended technology acceptance model. Asia Pacific Education Review, 11(2), 253-262.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.
Voss, B. D. (2013). Massive open online courses (MOOCs): A Primer for University and College Board Members. Association of Governing Boards of Universities and Colleges. Retrieved from http://agb.org/sites/default/files/legacy/report_2013_MOOCs.pdf
Warshaw, P. R. (1980). A new model for predicting behavioral intentions: An alternative to Fishbein. Journal of Marketing Research, 153-172.
Waugh, N. C., & Norman, D. A. (1965). Primary Memory. Psychological Review, 72(2), 89-104.
Yuan, L., Powell, S., & CETIS, J. (2013). MOOCs and open education: Implications for higher education.
指導教授 楊鎮華 審核日期 2015-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明