博碩士論文 102423032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:18.191.154.132
姓名 胡小亮(Hsiao-liang Hu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 設計並建立以本體論為基礎之風險辨識資訊系統
(The Design and Development of Ontology-Based Risk Identification Information System)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 專案在進行的過程中會面臨許多不確定性的問題,如果能夠事先知道有哪些風險並設法降低或消除它所帶來的影響,將有利專案之順利進行。由於辨認風險是一個知識密集的活動,其必須仰賴專案人員的經驗,因此專案人員的風險知識與經驗多寡將會影響辨識的正確性。另外,由於風險之間可能會有交互影響關係,故風險辨識亦應包含辨識風險之間的關聯。有鑑於本體論常被應用於知識管理,其適合處理並整合專家的知識,耑此,本研究嘗試建立一個以本體論為基礎的專家系統,來塑模組織經驗及知識以協助專案團隊辨識風險項目,並進一步推論風險間的交互影響關係,以能正確掌握專案風險脈絡。本研究之系統是以網頁的方式呈現,並實際以個案公司提供的案例來說明和展示系統的操作。
摘要(英) Software development is dynamic and risky in nature. The development of a software project would be conducted successfully if risky can be identified and controlled properly. Because risk identification is a knowledge-intensive process, it depends on the experience of project members, which would affect the effectiveness of risk identification and control. Besides, risks may have interrelations so that the identification should also consider the interrelation of risks. Owing to the wide usage of ontology in knowledge management, this research attempt to establish an expert system based on ontology, which models the experience and knowledge of organization, to support project members to identify risks. The proposed system can further identify potential and their risks interrelationship. This study will be implemented into a web-based system, and use a case to demonstrate and verify the usage of the system.
關鍵字(中) ★ 軟體專案風險管理
★ 風險辨識
★ 本體論
★ 知識密集
★ 專家系統
關鍵字(英) ★ Software project risk management
★ Risk identification
★ Ontology
★ Knowledge-intensive
★ Expert system
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究限制與假設 4
1.5 論文架構 4
第二章 文獻探討 6
2.1 軟體專案風險管理 6
2.2 本體論 9
2.3 應用本體論於專案風險管理 10
2.4 專家系統 11
第三章 系統與模型設計 14
3.1 系統架構 14
3.2 風險因子之建立 15
3.3 風險辨識本體模型 20
3.4 規則設計 30
3.5 回饋機制設計 33
第四章 系統展示 35
4.1 個案描述 36
4.2 知識擷取與建立 38
4.3 功能展示 42
第五章 系統驗證 51
5.1 模式分析 51
5.1.1 完整性(Completeness) 51
5.1.2 一致性(Consistency) 52
5.1.3 簡要性(Conciseness) 52
5.2 以科技接受模式探討本研究之本體應用 53
5.2.1 認知有用性 54
5.2.2 認知易用性 61
第六章 結論與未來展望 64
6.1 研究結果與討論 64
6.2 研究限制與未來展望 65
參考文獻 66
附錄 76
參考文獻 [1] 李又權 & 歐陽超. (2011). 發展一BPMN為基之本體論以支援工程專案風險管理.
[2] 陳仲儼 & 黃永福. (2009). 運用模糊專家系統來協助軟體專案進行流程調適. 電子商務學報, 11(1), 235-258.
[3] Abidi, S. S. R., & Manickam, S. (2002). Leveraging XML-based electronic medical records to extract experiential clinical knowledge. International Journal of Medical Informatics, 68, 187–203.
[4] Addison, T. (2003). E-commerce project development risks: evidence from a Delphi survey. International Journal of Information Management, 23(1), 25-40.
[5] Addison, T., & Vallabh, S., 2002. Controlling software project risks – an empirical study of methods used by experienced project managers. Proceedings of SAICSIT, pp. 128–140.
[6] Alonso F., Martinez L., Perez A. & Valente J.P. (2012). Cooperation between expert knowledge and data mining discovered knowledge: Lesson learned. Expert Systems with Applications, 39, 7524‐7535.
[7] Bakker, K., Boonstra, A. and & Wortmann, H. (2010). Does Risk Management Contribute to IT Project Success? A Meta-Analysis of Empirical Evidence. International Journal of Project Management, 28(5), 493–503.
[8] Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. The Journal of Systems and Software, 81(12), 2118–2133.
[9] Barki, H., Rivard S., & Talbot, J. (1993). Toward an assessment of software. Journal of Management Information Systems, 10(2), pp. 203-225.
[10] Barros, M. O., Werner, C. M. L., & Travassos, G.H. (2004). Supporting risks in software project management. Journal of Systems and Software, 70(1–2), 21–35.
[11] Bleul, S., Weise, T., & Geihs, K. (2006). An ontology for quality-aware service discovery. Computer Systems Science and Engineering, 21(4), 227.
[12] Boehm, B. W. (1991). Software risk management: principles and practices. Software, IEEE, 8, 32-41
[13] Bonstre, A., Ors, R., & Peris, M. (2004). Advanced automation of a flow injection analysis system for quality control of olive oil through the use of a distributed expert system. Analytica Chimica Acta, 506, 189–195.
[14] Bowles, J. (1998, January). The new SAE FMECA standard. Reliability and Maintainability Symposium (pp. 48-53). Anaheim, CA: IEEE.
[15] BüyükoÅNzkan, G., & Ruan, D. (2010). Choquet integral based aggregation approach to software development risk assessment. Information Sciences, 180(3), 441–451
[16] Carr, M.J., Konda, S.L., Monarch, I., Ulrich, C.F., & Walker, C.F. (1993). Taxonomy-Based Risk Identification, Technical Report No: CMU/SEI-93-TR-6, ESC-TR-93-183, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
[17] Carr, V., & Tah, J. H. M. (2001). A fuzzy approach to construction project risk assessment and analysis: construction project risk management system. Advances in Engineering Software, 32(10–11), 847–857.
[18] Chandrasekaran, B., Josephson, J. & Benjamins, V. (1999). What are ontologies, and why do we need them?. IEEE Intelligent Systems and Their Applications, 14(1), 20-26.
[19] Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42, 42–49.
[20] Chi, Y. L. (2010). Rule-based ontological knowledge base for monitoring partners across supply networks. Expert Systems with Applications, 37(2), 1400-1407.
[21] Corcho, O., Ferna ́ ndez-Lo ́ pez, M., & Go ́ mez-Pe ́ rez, A. (2003). Methodologies, tools and languages for building ontologies. Where is their meeting point?. Data Knowledge Engineering, 46(1), 41–64.
[22] Croce, F., Delfino, B., Fazzini, P. A., Massucco, S., Morini, A., Silvestro, F., & Sivieri, M. (2001). Operation and management of the electronic system for industrial plants: an expert system prototype for load-shedding operator assistance. IEEE Transactions on Industry Applications, 37, 701–708.
[23] Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: combining rigour, relevance and pragmatism. Information systems journal, 8(4), 273-289.
[24] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
[25] Davis, F. D., & Venkatesh, V. (2004). Toward preprototype user acceptance testing of new information systems: implications for software project management. Engineering Management, IEEE Transactions on, 51(1), 31-46.
[26] Dey, P. K., Kinch, J., & Ogunlana, S. O. (2007). Managing risk in software development projects: a case study. Industrial Management & Data, 107(2), 284-303.
[27] Dhlamini, J., Nhamu, I. & Kaihepa, A. (2009, July). Intelligent Risk Management Tools for Software Development, Proceedings of the Annual Conference of the Southern African Computer Lecturers’ Association, Eastern Cape, 2-11, pp. 33-40.
[28] Dong, J. S., Lee, C. H., Lee, H. B., Li, Y. F., & Wang, H. (2004, May). A combined approach to checking web ontologies. In Proceedings of the 13th international conference on World Wide Web (pp. 714-722). ACM.
[29] Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., & Sillito, J. (2011). Qualitative research in software engineering. Empirical Software Engineering, 16(4), 425-429.
[30] Fairley, R. (1994). risk management for software projects. IEEE software, 11(3), 57-67.
[31] Fan, C., & Yu, Y. (2004). BBN-based software project risk management. Journal of Systems and Software, 73(2), 193–203.
[32] Fang, C., & Marle, F. (2012). A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52, 635–644.
[33] Gardan, N., & Gardan, Y. (2003). An application of knowledge based modeling using scripts. Expert systems with Applications, 25, 555–568.
[34] Genesereth, M. R., & Nilsson, N. J. Logical Foundations of Artificial Intelligence. (1987). San Mateo, CA, Morgan Kufmann, xviii, 405.
[35] Gómez-Pérez, A. (1996). Towards a framework to verify knowledge sharing technology. Expert Systems with Applications, 11(4), 519-529.
[36] Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition, 5 (2), 199-220.
[37] Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?. International journal of human-computer studies, 43(5), 907-928.
[38] Hatzilygeroudis, J., & Prentzas, J. (2004). Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems. Expert Systems with Applications, 27, 63–75.
[39] He, J., Yan, H., Liu, C., & Maozhong, J. (2007). A framework of ontology-supported knowledge representation in software process. In Proceedings of International Conference on Intelligent Systems and Knowledge Engineering.
[40] Heal, G., & Kunreuther, H. (2007). Modeling interdependent risks. Risk Analysis, 27(3), 621–634.
[41] Horrocks, I., Patel-Schneider, P. F., Bechhofer, S., & Tsarkov, D. (2005). OWL rules: A proposal and prototype implementation. Web Semantics: Science, Services and Agents on the World Wide Web, 3(1), 23-40.
[42] Islam, M. S., Kunifuji, S., Miura, M., & Hayama, T. (2011). Adopting knowledge management in an e-learning system: Insights and views of KM and EL research scholars. Knowledge Management & E-Learning: An International Journal (KM&EL), 3(3), 375-398.
[43] Johnson, J., Boucher, K.D., Connors, Y., & Robinson, J. (2001). The criteria for success. Software Magazine, 21(1), S3–S11.
[44] Jurisica, I., Mylopoulos, J., & Yu, E. (2004). Ontologies for knowledge management: an information systems perspective. Knowledge and Information systems, 6(4), 380-401.
[45] Juuso, E. K. (2004). Integration of intelligent systems in development of smart adaptive systems. International Journal of Approximate reasoning, 35, 307–337.
[46] Kayed, A., & Colomb, R. M. (2002). Extracting ontological concepts for tendering conceptual structures. Data and Knowledge Engineering, 40(1), 71–89.
[47] Keil, M., Cule, P.E., Lyytinen, K., & Schmidt, R.C. (1998). A framework for identifying software project risks. Communications of the ACM, 41(11), 76–83.
[48] Keil, M., Li, L., Mathiassen, L., & Zheng, G. (2008). The influence of checklists and roles on software practitioner risk perception and decision-making. Journal of Systems and Software, 81(6), 908–919.
[49] Kettinger, W. J., & Lee, C. C. (1997). Pragmatic perspectives on the measurement of information systems service quality. MIS Quarterly, 21(2), 223-240.
[50] Lavbič, D., & Krisper, M. (2010). Facilitating ontology development with continuous evaluation. Informatica, 21(4), 533-552.
[51] Lee, E., Park, Y., & Shin, J. (2008). Large engineering project risk management using a Bayesian Belief Network. Expert Systems with Applications, 36(3), 5880–5887.
[52] Lee, S.W., Muthurajan, D., Gandhi, R.A., Yavagal, D. & Ahn, G. (2006). Building decision support problem domain ontology from natural language requirements for software assurance. International Journal of Software and Knowledge Engineering, 16(6), 851-884.
[53] Leung, D., & Romagnoli, J. (2000). Dynamic probabilistic model-based expert system for fault diagnosis. Computers and Chemical Engineering, 24, 2473–2492.
[54] Li, W., Tasi, Y. P., Tasi, & Chiu, C. L. (2004). The experimental study of the expert system for diagnosing unbalance by ANN and acoustic signals. Journal of Sound and Vibration, 272, 69–83.
[55] Liao, S. H. (2005). Expert system methodologies and applications—a decade review from 1995 to 2004. Expert Systems with Applications, 28(1), 93-103.
[56] Liau, L. C. K., Yang, C. K., & Tasi, M. T. (2004). Expert system of a crude oil distillation unit for process optimization using neural networks. Expert Systems with Applications, 26, 247–255.
[57] Liu, Y., & Schulz, N. N. (2002). Knowledge-based system for distribution system outage locating using comprehensive information. IEEE Transactions on Power Systems, 17, 451–456.
[58] Machado, J. B., & Pereira, S. L. (2012). Automatic Risk Identification in Software Projects: An Approach Based on Inductive Learning. Intelligent Information Management, 4(5A), 291-295.
[59] Madeche, A. (2001). Ontology learning for the semantic Web. IEEE Transaction on Intelligent Transportation System, 16(2), 72-79.
[60] Maedche, A., Motik, B., Stojanovic, L., Studer, R., & Volz, R. (2003). Ontologies for enterprise knowledge management. IEEE Intelligent Systems, 18(2), 26-33.
[61] Marle, F., Vidal, L. A., & Bocquet, J. C. (2013). Interactions-based risk clustering methodologies and algorithms for complex project management. International Journal of Production Economics, 142(2), 225-234.
[62] Mendes, P. N., Mühleisen, H., & Bizer, C. (2012, March). Sieve: linked data quality assessment and fusion. In Proceedings of the 2012 Joint EDBT/ICDT Workshops (pp. 116-123). ACM.
[63] Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and organization, 17(1), 2-26.
[64] Na, K. S., Simpson, J. T., Li, X., Singh, T., & Kim, K. Y. (2007). Software development risk and project performance measurement: Evidence in Korea. Journal of Systems and Software, 80(4), 596-605.
[65] Nakatsu, R. T., & Iacovou, C. L. (2009). A Comparative Study of Important Risk Factors Involved in Offshore and Do-mestic Outsourcing of Software Development Projects: A Two-Panel Delphi Study. Information and Management, 46(12), 57-68.
[66] Navigli, R., Velardi, P., & Gangemi, A. (2003). Ontology learning and its application to automated terminology translation. Intelligent Systems, IEEE, 18(1), 22-31.
[67] Neves, S. M., Silva, C. E. S., Salomon, V. A. P., Silva, A. F., & Sotomonte, B. E. P. (2014). Risk management in software projects through Knowledge Management techniques: Cases in Brazilian Incubated Technology-Based Firms. International Journal of Project Management, 32(1), 125–138.
[68] Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology.
[69] Odzaly, E.E., Greer, D., & Sage, P. (2009, October). Software risk management barriers: An empirical study. 3rd International Symposium on Empirical Software Engineering and Measurement (pp. 418-421). Lake Buena Vista, FL: IEEE.
[70] Orduna, E., Garces, F., & Handschin, E. (2003). Algorithmic-knowledgebased adaptive coordination in transmission protection. IEEE Transactions on Power Delivery, 18, 61–70.
[71] Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. (2007). Engineering Design — a Systematic Approach(3nd). Springer.
[72] Parsia, B., Sirin, E., & Kalyanpur, A. (2005, May). Debugging OWL ontologies. In Proceedings of the 14th international conference on World Wide Web (pp. 633-640). ACM.
[73] PMI, S. C. (2013). A Guide to the Project Management Body of Knowledge (PMBOK) (2013 ed.), Project Management Institute, Newton Square, PA, USA, 2013.
[74] Robin, C. R. R., & Uma, G. V. (2010). Ontology based semantic knowledge representation for software risk management. International Journal of Engineering Science and Technology, 2(10), 5611-5617.
[75] Roknuzzaman, M., Kanai, H., & Umemoto, K. (2009). Integration of knowledge management process into digital library system: a theoretical perspective. Library Review, 58(5), 372-386.
[76] Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., & Rebeck, K. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16.
[77] Schmidt, R., Lyytinen, K., Keil, M., & Cule, P. (2001). Identifying Software Project Risks: An International Delphi Study. Journal of Management Information Systems, 17(4), 5-36.
[78] Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering. Software Engineering, IEEE Transactions on, 25(4), 557-572.
[79] Sen, M. D. L., Minambres, J. J., Garrido, A. J., Almansa, A., & Soto, J. C. (2004). Basic theoretical results for expert systems, application to the supervision of adaptation transients in planar robots. Artificial intelligence, 152, 173–211.
[80] Shu, C., & Burn, D. H. (2004). Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. Journal of Hydrology, 291, 132–149.
[81] Smith, E. A. (2001). The role of tacit and explicit knowledge in the workplace. Journal of knowledge Management, 5(4), 311-321.
[82] Staab, S., Studer, R., Schnurr, H. P., & Sure, Y. (2001). Knowledge processes and ontologies. IEEE Intelligent systems, 16(1), 26-34.
[83] Studer, R., Benjamins, V.R. & Fensel, D. (1998). Knowledge engineering: principles and methods. Data and Knowledge Engineering, 8(3), 240-253.
[84] Sugumaran, V. & Storey, V.C. (2002). Ontologies for conceptual modeling: their creation, use, and management. Data and Knowledge Engineering, 42(3), 251-271.
[85] Suppiah, V., & Sandhu, M. S. (2011). Organisational culture′s influence on tacit knowledge-sharing behaviour. Journal of Knowledge Management, 15(3), 462-477.
[86] Sure, Y., Staab, S., & Studer, R. (2002). Methodology for development and employment of ontology based knowledge management applications. ACM SIGMOD Record, 31(4), 18-23.
[87] Tserng, H. P., Yin, S. Y. L., Dzeng, R. J., Wou, B., Tsai, M. D., & Chen W. Y. (2009). A study of ontology-based risk management framework of construction projects through project life cycle. Automation in Construction, 18(7), 994-1008.
[88] Turban, E., & Aronson, J. E. (2001). Decision support systems and intelligent systems, sixth Edition (6th ed). Hong Kong: Prentice International Hall.
[89] Urrea, C., Henriquez, G., & Jamett, M., (2015). Development of an expert system to select materials for the main structure of a transfer crane designed for disabled people. Expert Systems with Applications, 42, 691-697.
[90] Wand, Y. & Weber, R. (2002). Research commentary: information systems and conceptual modeling. Information System Research, 13(4), 363-376.
[91] Wiig, K. M. (1994). Knowledge management, the central management focus for intelligent-acting organization. Arlington: Schema Press.
[92] Willcocks, L. P., & Lacity, M. C. (1999). IT outsourcing in insurance services: risk, creative contracting and business advantage. Information Systems Journal, 9(3), 163–180.
[93] Xu, Z., Gao, K., Khoshgoftaar, T. M., & Seliya, N. (2014). System regression test planning with a fuzzy expert system. Information Sciences, 259, 532–543.
[94] Yu, J., Thom, J. A., & Tam, A. (2007, November). Ontology evaluation using wikipedia categories for browsing. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge management (pp. 223-232). ACM.
指導教授 陳仲儼(Chung-yang Chen) 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明