參考文獻 |
參考文獻
[1] Li, Jian, Tom E. Seidel, and Jim W. Mayer. "Copper-Based Metallization in ULSI Structures: Part II: Is Cu Ahead of Its Time as an On-Chip Interconnect Material?." MRS Bulletin 19.08 (1994): 15-21.
[2] Torres, J., et al. "Copper-based metallization for ULSI circuits." Microelectronic engineering 34.1 (1996): 119-122.
[3] International Technology Roadmap for Semiconductors. Interconnect, 2007
[4] International Technology Roadmap for Semiconductors. Interconnect, 2005
[5] 林明賢,“銅導線中電遷移效應所引發之故障特性探討”, 博士論文, 國立交通大學,2006
[6] Suni, I., et al. "Thermal stability of hafnium and titanium nitride diffusion barriers in multilayer contacts to silicon." Journal of the Electrochemical Society 130.5 (1983): 1215-1218.
[7] 鄭義榮、黃俊夫、栢添賜、高凱傑、黃麒嘉, “內建連接導線系統之可靠度” 奈米通訊, 20卷1
[8] 黃孟碩. "雙層超薄 Ru/Ta-Si-C 擴散阻障層與銅連導線製程特性探討." 虎尾科技大學材料科學與綠色能源工程研究所學位論文 (2011): 1-118.
[9] Bystrova, Svetlana. Diffusion barriers for Cu metallisation in Si integrated circuits: deposition and related thin film properties. University of Twente, 2004.
[10] Shin, Young-Hoon, and Yukihiro Shimogaki. "Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI." Science and Technology of Advanced Materials 5.4 (2004): 399-405.
[11] Nicolet, M-A. "Diffusion barriers in thin films." Thin Solid Films 52.3 (1978): 415-443.
[12] Wang, Shi‐Qing, et al. "Diffusion barrier properties of TiW between Si and Cu." Journal of applied physics 73.5 (1993): 2301-2320.
[13] Kaloyeros, A. E., and E. Eisenbraun. "Ultrathin diffusion barriers/liners for gigascale copper metallization." Annual review of materials science 30.1 (2000): 363-385.
[14] Kapur, Pawan, et al. "Technology and reliability constrained future copper interconnects. II. Performance implications." Electron Devices, IEEE Transactions on 49.4 (2002): 598-604.
[15] H. Shibata, Proceedings of International Symposium on ULSI ProcessIntegration of the 199th Electro-Chemical Society Meeting, 2001 , p. 402.
[16] Barmak, K., et al. "On the use of alloying elements for Cu interconnect applications." Journal of Vacuum Science & Technology B 24.6 (2006): 2485-2498.
[17] Lee, Wonhee, et al. "Factors affecting passivation of Cu (Mg) alloy films." Journal of The Electrochemical Society 147.8 (2000): 3066-3069.
[18] Liu, C. J., et al. "Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO2." Journal of Vacuum Science & Technology B 20.6 (2002): 2361-2366.
[19] Koike, J., and M. Wada. "Self-forming diffusion barrier layer in Cu–Mn alloy metallization." Applied Physics Letters 87.4 (2005): 041911.
[20] Haneda, M., J. Iijima, and J. Koike. "Growth behavior of self-formed barrier at Cu-Mn/SiO2 interface at 250-450° C." Applied physics letters 90.25 (2007): 2107.
[21] Chung, S-M., and J. Koike. "Analysis of dielectric constant of a self-forming barrier layer with Cu–Mn alloy on TEOS-SiO 2." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27.5 (2009): L28-L31.
[22]C. Y. Chang and S. M. Sze, ULSI Technology, the McGRAWHILL,
P. 663, 1996
[23] 吳文發、秦玉龍, ”電遷移效應對銅導線可靠度之影響 ”奈米通訊 第六卷第一期,1999
[24] Lienig, Jens. "Introduction to electromigration-aware physical design." Proceedings of the 2006 international symposium on Physical design. ACM, 2006.
[25] Arnaud, Lucile, et al. "Microstructure and electromigration in copper damascene lines." Microelectronics Reliability 40.1 (2000): 77-86.
[26] Waltz, Patrice, et al. "Influence of thermal heating effect on pulsed DC electromigration result analysis." Microelectronics Reliability 38.10 (1998): 1531-1537.
[27] Rossiter, Paul L. The electrical resistivity of metals and alloys. Cambridge University Press, 1991.
[28] E.Ivanov, Thin Solid Films, 1332,325, 1998
[29] Wang, M. T., Y. C. Lin, and M. C. Chen. "Barrier properties of very thin Ta and TaN layers against copper diffusion." Journal of The Electrochemical Society 145.7 (1998): 2538-2545.
[30] The International Technology Roadmap for Semiconductor, ITRS (2010).
[31] ASTM Standards, "Standard Guide For Design of Flat, Straight-Line Test Structure for Detecting Metalliztion Open-Circuit of Resistance-Increase Failure Due to Electromigration ", Designation : F1259-89
[32]秦玉龍,“電遷移效應對銅金屬連線之危害”,博士論文, 國立交通大學, 2002
[33] Yokogawa, S., et al. "A novel resistivity measurement technique for scaled-down Cu interconnects implemented to reliability-focused automobile applications." Electron Devices Meeting, 2006. IEDM′06. International. IEEE, 2006.
[34] Torazawa, Naoki, et al. "Effects of N doping in Ru-Ta alloy barrier on film property and reliability for Cu interconnects." Interconnect Technology Conference, 2009. IITC 2009. IEEE International. IEEE, 2009.
[35] Tao, Jiang, Nathan W. Cheung, and Chenming Hu. "Electromigration characteristics of TiN barrier layer material." Electron Device Letters, IEEE 16.6 (1995): 230-232.
[36] Cao, Linjun, Paul S. Ho, and Patrick Justison. "Electromigration reliability of Mn-doped Cu interconnects for the 28 nm technology." Reliability Physics Symposium (IRPS), 2013 IEEE International. IEEE, 2013.
[37] Gambino, J., et al. "Reliability of Cu interconnects with Ta implant." International Interconnect Technology Conference, IEEE 2007. IEEE, 2007.
[38] Haneda, M., J. Iijima, and J. Koike. "Growth behavior of self-formed barrier at Cu-Mn/SiO2 interface at 250-450° C." Applied physics letters 90.25 (2007): 2107.
|