參考文獻 |
Reference
[1] Eli Yablonovitch, ‘Inhibited Spontaneous Emission in Solid-StatePhysics and Electronics,’Phys. Rev. Lett. 58, 2059, 1987
[2] Sajeev John, ‘Strong localization of photons in certain dielectric
superlattices,’ Phys. Rev. Lett. 58, 2486, 1987
[3] J. D. Joannopoulos, ‘Photonic Crystals-Molding the Flow of
Light,’ Princeton University Press, 41, William Street, Princeton,
New Jersey 08540, p. 6, 1995
[4] http://www.lostseaopals.com.au/opals/index.asp
[5] L. P. Biro et al, Phys. Rev. E, 67, 021907, 2003
[6] Barrett Comiskey, J. D. Albert, Nature, vol. 394, 253, 1998
[7] O. Painter, ‘Two-Dimensional Photonic Band-Gap Defect Mode
Laser,’Science,284, 1819, 1999
[8] Jeong-Ki Hwang , ‘Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54?m,’
Appl. Phys. Lett., 76, 2982, 2000
[9] J. K. Hwang, ‘Continuous Room-Temperature Operation of Optically Pumped Two-Dimensional Photonic Crystal Lasers at 1.6?m,’ IEEE
Phot. Tech. Lett., 12, 1295, 2000
[10] Hong-Gyu Park, ‘Nondegenerate monopole-mode two-dimensional
photonic band gap laser,’ Phys. Rev. Lett., 79, 3032, 2001
[11] Hong-Gyu Park, ‘Characteristics of Modified Single-Defect
Two-Dimensional Photonic crystal Lasers’ IEEE J. Quantum
Electro.,38, 1353, 2002
[12] Marko Loncar, ‘Low-threshold photonic crystal laser,’ Appl. Phys.
Lett., 81, 2680, 2000
[13] C. Monat, ‘Two-dimensional hexagonal-shaped microcavities
formed in a two-dimensional photonic crystal on an InP
membrane,’ J. Appl. Phys., 93, 23, 2003
[14] S. David, ‘Two-dimensional photonic crystals with Ge/Si
self-assembled islands,’ Appl. Phys. Lett., 83, 2509, 2003
[15] Tomoyuki Yoshie, ‘Optical characterization of two-dimensional
photonic crystal cavities with indium arsenide quantum dot
emitters,’ Appl. Phys. Lett., 79, 114, 2001
[16] Dae-Sung Song, ‘Single-fundamental-mode photonic-crystal
vertical-cavity surface-emitting lases,’ Appl. Phys. Lett., 80, 3901,
2002
[17] O. Painter, ‘Defect modes of a two-dimensional photonic crystal in
an optically thin dielectric slab,’ J. Opt. Soc. Am. B, 16, 275, 1999
[18] Eiji Miyai, ‘Quality factor for localized defect modes in a photonic
crystal slab upon a low-index dielectric substrate,’ Opt. Lett., 26,
740, 2001
[19] Han-Youl, ‘Square-lattice photonic band-gap single-cell laser
operating in the lowest-order whispering gallery mode,’ Appl.
Phys. Lett., 80, 3883, 2002
[20] K. Hennessy, ‘Square-lattice photonic crystal microcavities for coupling to single InAs quantum dots,’ Appl. Phys. Lett., 83, 3650,
2003
[21] Marko Loncar, ‘Low-threshold photonic crystal laser,’ Appl. Phys.
Lett., 81, 2680, 2002
[22] O. J. Painter, ‘Room Temperature Photonic Crystal Defect Lasers at
Near-Infrared Wavelengths in InGaAsP,’ J. Ligh. Tech., 17, 2082,
1999
[23] Se-Heon Kim, ‘Two-dimensional photonic crystal hexagonal
waveguide ring laser,’ Appl. Phys. Lett., 81, 2499, 2002
[24] Se-Heon Kim, ‘Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,’ J. Appl. Phys., 95, 411, 2004
[25] K.S. Yee, ‘Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,’ IEEE Trans.
Antennas Propag. , 14, 302, 1966
[26] K. Kawano, ‘Introduction to Optical Waveguide Analysis:Solving
Maxwell’s Equations and the Schrödinger Equation,’ T. Kiton,
(WILEY, 2001)
[27] J. P. Berenger, ‘A Perfectly Matched Layer for the Absorption of
Electromagnetic Waves,’ J. Comput. Phys. , 114, 185 ,1994
[28] K. Sakoda, ‘Optic Properties of Photonic Crystals,’ (Springer,
2001)
[29] Chares Kittel, ‘Introduction to Solid State Physic’.
[30] T. Ochiai, ‘Dispersion relation and optical transmittance of a
hexagonal photonic crystal slab,’ Phys. Rev. B, 63, 125107, 2001
[31] Cheolwoo Kim, ‘Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers,’ J. Opt. Soc. Am. B, 19,
1777, 2002
[32] Han-Youl Ryu, ‘The Smallest Possible Whispering –Gallery –Like Mode in the Square Lattice Photonic-Crystal Slab Single-Defect
Cavity,’ IEEE J. Quantum Electro., 39, 314, 2003
[33] I. Alvarado-Rodriguez, ‘Separation of radiation and absorption losses in two-dimensional photonic crystal single defect cavities,’ J.
Appl. Phys., 92, 6399, 2002
[34] Kartik Srinivasan, ‘Momentum space design of high-Q photonic
crystal optical cavities,’ OPTICS EXPRESS, 10, 670, 2002
[35]Yoshihiro Akahane, ‘High-Q photonic nanocavity in a
two-dimensional photonic crystal,’ Nature, 425, 944, 2003
[36] E. M. Purcell, Phys. Rev., 69, 681, 1946
[37] Serge Haroche, ‘Cavity Quantum electrodynamics,’ Phys. Today,
24,1989
[38] Amnon Yariv, ‘Theory and Applications of Quantum Mechanics’
[39] Ramamurti Shankar, ‘Principles of Quantum Mechanics’
[40] J. M. Gerard, ‘Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,’ Phys. Rev. Lett., 81, 1110,
1998
[41] Misha Boroditsky, ‘Spontaneous Emission Extraction and Purcell Enhancement from Thin-Film 2-D Photonic Crystals,’ J. Light.
Tech., 17, 2096, 1999
[42] Jean-Michel Gerard, ‘Strong Purcell Effect for InAs Quantum Boxes in Three-Dimensional Solid-State Microcavities,’ J. Light. Tech., 17,
2089, 1999
[43] Frank J. Blatt, ‘MODERN PHYSICS’
[44]J. S. Foresi, ‘Photonic-bandgap microcavities in Optical
waveguides,’Nature, 390, 143, 1997
[45]P. R. Villeneuve, ‘Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity,’ IEE Proc.
-Optoelectron., 145, 384, 1998 |