以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:37 、訪客IP:52.15.223.239
姓名 許淑媛(Shu-yuan Hsu) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 三個串接耦合量子點系統的遠程同調穿隧 效應對電流及電子熱流的影響之分析
(Long-distance coherent tunneling effect on the charge and heat currents in serially coupled triple quantum dots)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文裡,結合了extened Hubbard 模型和Anderson 模型說明在遠程同
調穿隧(Long-distance coherent tunneling ,LDCT) 效應下,三個量子點串接
耦合在一起並且左右端連接電極時產生的電流與熱流,並且採用凱帝旭-格林函
數方法詮釋串接耦合量子點的傳輸行為。利用有效質量理論計算半導體量子點彼
此間的電子庫倫交互作用力、電子躍遷強度以及偏壓相依的雙量子點能階。隨著
雙量子點間距的增加,量子點間的耦合強度會以指數型式變弱,因此電流和電子
熱流值隨之變小。若在兩個量子點之間嵌入另一個量子點,則外側量子點的耦合
在遠程同調穿隧(LDCT)效應下將增強。因此可藉由調控中間量子點的能階來改變
外側量子點系統的傳輸特性。此外,在非對稱能階的情形下更可明顯看出熱整流
效應存在於三個量子點的系統中。摘要(英) In the thesis, combined the extened Hubbard and Anderson models to illustrate
the effect of long-distance coherent tunneling(LDCT) on charge and heat currents in
serially coupled tripled quantum dots(SCTQDs) connected to left and right electrodes.
The transmisssion coefficient of quantum dots in columb blockage regime can be
calculated by Keldysh-Green’s function technique. The physical parameters including
electron Coulomb interactions, electron hopping strengths, and bias-dependent
quantum dot energy levels are calculated in the framework of effective mass theory
for semiconductor TQDs. The interdot coupling strength decreases exponentially with
the separation between QDs. Therefore, the charge and heat currents will become
insignificant. If embedded another QD in the middle of two QDs, the effect of LDCT
on the coherent of outside QDs can be robust. It’s possible to change the transmission
characteristics by tuning the energy level of the middle QD. In addition, it is shown
that prominent heat rectification behavior can exist in the TQD system with
asymmetrical energy levels.關鍵字(中) ★ 遠程同調穿隧效應
★ 三個串接耦合量子點
★ 量子傳輸
★ 熱電關鍵字(英) 論文目次 摘 要.............................................................................................................................. I
ABSTRACT .................................................................................................................. II
致謝.............................................................................................................................. III
目錄.............................................................................................................................. IV
圖目錄.......................................................................................................................... VI
第一章 導論.................................................................................................................. 1
1-1 前言 .............................................................................................................. 1
1-2 熱電簡介及歷史 .......................................................................................... 2
1-3 三個量子點的串接耦合(Serilly coupled triple quantum dots, SCTQDs) 5
1-4 研究動機 ...................................................................................................... 6
第二章 系統模型........................................................................................................ 7
2-1 串接耦合量子點系統 ..................................................................................... 7
2-3 物理參數的探討 .......................................................................................... 10
第三章 線性響應區間的熱電分析............................................................................ 15
3-1 熱電特性 ...................................................................................................... 15
3-2 遠程同調穿隧效應(LDCT)分析 ................................................................. 16
3-3 庫倫交互作用力對於熱電係數的影響 ...................................................... 22
V
3-4 電子躍遷強度對於熱電係數的影響 .......................................................... 24
第四章 非線性響應區間的電流及熱流分析............................................................ 26
4-1 庫倫交互作用力與遠程同調穿隧(LDCT)效應之穿隧電流分析 ............. 26
4-2 穿隧率與LDCT 效應之穿隧電流分析 ...................................................... 29
4-3 電子躍遷強度與LDCT 效應之電流分析 .................................................. 31
4-4 遠程同調穿隧效應(LDCT)效應對電子熱流的影響 ............................... 33
第五章、結論.............................................................................................................. 38
參考文獻...................................................................................................................... 39參考文獻 [1] L. D. Hicks., and M.S.Dresselhaus, “T hermoelectric figure of merit of a
one-dimensional conductor”, Phy.Rev.B,47,16631(1993).
[2] M. Terraneo, M. Peyrard,and G.Casati, “Contralling the Energy Flow in
Nonlinear Lattices:A Model for a Thermal Rectifier”, Phys.
Rev.Lett.88,094302(2002).
[3] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”,
Infosearch, London, (1957).
[4] H. J. Goldsmd., B. Sc., and R. W. Dougl, “The use of semiconductors in
thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 386 (1954).
[5] L. D. Hicks. and M. S. Dresselhaus. , “Effect of quantum-well structures on the
thermoelectric figure of merit”, Phys. Rev. B, 47, 12727 (1993).
[6] L. D. Hicks., T. C. Harman., X. Sun. and M. S. Dresselhaus. , “Experimental
study of the effect of quantum-well structures on the thermoelectric figure of
merit”, Phys. Rev. B, 53,R10493 (1996).
[7] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang. ,
“Experimental proof-of-principle investigation of enhanced Z3DT in (001)
oriented Si/Ge superlattices”, Appl. Phys. Lett. 76, 3944 (2000).
40
[8] G. Chen, “Thermal conductivity and ballistic-phonon transport in the
cross-plane direction of superlattices”, Phys. Rev. B, 57, 14958(1998).
[9] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit
of a molecular junction”, Phys. Rev. B 78, 161406 (2008).
[10] D. M. T. Kuo. and Y. C. Chang, “Thermoelectric and thermal rectification
properties of quantum dot junctions”, Phys. Rev. B, 81, 205321 (2010).
[11] L. Wang and B. Li, “Thermal Logic Gates: Computation with Phonons”, Phys.
Rev. Lett. 99, 177208 (2007).
[12] B. Sothmann, R. Sanchez, A. N. Jordan and M. Buttiker, “Rectification of
thermal fluctuations in a chaotic cavity heat engine”, Phys. Rev. B 85, 205301
(2012).
[13] T. Ruokola and T. Ojanen, “Single-electron heat diode: Asymmetric heat
transport between electronic reservoirs through Coulomb islands”, Phys. Rev. B
83, 241404 (2011).
[14] M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, “A thermal diode using
phonon rectification”, New J. Phys. 13, 113027 (2011).
[15] K. Ono, D. G. Austing, Y. Tokura, S. Tarucha, “Current Rectification by Pauli
Exclusion in a Weakly Coupled Double Quantum Dot System”, Science 297, 1313
(2002).
41
[16] M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreaus, S. A. Studenikin, and
A. S. Sachrajda, “Topological Hunds rules and the electronic properties of a triple
lateral quantum dot molecule”, Phys. Rev. B 75, 115301 (2007).
[17] M. Busl, R. Sanchez, and G. Platero, “Control of spin blockade by ac magnetic
fields in triple quantum dots”, Phys. Rev. B 81, 121306 (2010).
[18] I. Weymann, B. R. Bulka, and J. Barnas, “Dark states in transport through
triple quantum dots: The role of cotunneling”, Phys. Rev. B 83, 195302 (2011).
[19] F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, L. M. K.
Vandersypen, “Long-range coherent coupling in a quantum dot array”, Nature
Nanotechnology 8, 432–437 (2013).
[20] M. Busl, G. Granger, L. Gaudreau, R. Sa´nchez, A. Kam, M. Pioro-Ladrie`re, S.
A. Studenikin, P. Zawadzki, Z. R. Wasilewski, A. S. Sachrajda and G. Platero,
“Bipolar spin blockade and coherent state superpositions in a triple quantum
dot”, Nature Nanotechnology 8, 261(2013).
[21] David M.-T. Kuo and Yia-Chung Chang, “Long-distance coherent tunneling
effect on the charge and heat currents in serially coupled triple quantum dots”,
Phys. Rev. B 89, 115416 (2014).
[22] David M. T. Kuo and Yia-Chung Chang, “Tunneling current spectroscopy of a
nanostructure junction involving multiple energy levels”, Phys. Rev. Lett. 99.
42
086803 (2007).
[23] David M.-T. Kuo and Yia-Chung Chang, “Thermoelectric Properties of a
Semiconductor Quantum Dot Chain Connected to Metallic Electrodes”,
Nanotechnology 24, 175403(2013).
[24] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots
under a uniform electric field”, Phys. Rev. B 61, 11051 (2000).
[25] T. Markussen., A. P. Jauho., and M. Brandyge, “Surface-decorated silicon
nanowires: a route to high-ZT thermoelectrics”, Phys. Rev. Lett. 103, 055502 (2009).
[26] D. M. T. Kuo and Y.-C. Chang, “Bipolar Thermoelectric Effect in a Serially
Coupled Quantum Dot System s”, Jpn. J. Appl. Phys. 50, 105003 (2011).
[27] S. Amaha, W. Izumida, T. Hatano, S. Teraoka, S. Tarucha, J. A. Gupta, and D. G.
Austing, “Two- and Three-Electron Pauli Spin Blockade in Series-Coupled Triple
Quantum Dots”, Phys. Rev. Lett. 110, 016803(2013).指導教授 郭明庭(Ming-ting Kuo) 審核日期 2015-7-14 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare