博碩士論文 995301002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.21.105.46
姓名 顏智鴻(Chih-Hung Yen)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 具過電流保護偵測及過載除頻之高轉換效能同步互補式金氧半降壓切換式穩壓器
(High Efficiency Synchronous CMOS Switching Buck Regulator with Current Limit and Frequency Divider Mode Technique)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於可攜式電子產品的設計朝向多功能智慧型手機發展,將多功能的晶片整合至單一系統上,電源管理晶片的發展因為高轉換效能的技術已經趨於飽和,另一方面,由於可攜式電子產品大部分時間都是使用者攜帶於身邊,因此使用的安全性是當前相當重要的課題。
因應輸出負載異常時之電源保護系統,在本論文為設計一個具有過電流保護機制及過負載除頻之降壓穩壓器,其中提出精準電感電流偵測電路取得電感電流變化,適當調整功率電晶體導通週期,調節輸出功率得以控制最大輸出功率點,相較於傳統的降壓穩壓器,則具有較安全而更低能耗之特性。
此具過電流保護偵測及過載除頻之降壓穩壓器是以TSMC 0.18 um 3.3 V 1P6M CMOS製程實現,此晶片的工作電壓範圍為2.5 V ~ 4.5 V,操作頻率為1 MHz,提供1 V的輸出電壓轉換,在外部電感10 uH以及外部電容10 uF情況下,轉換時間為50 us,而可供應負載電流範圍為0.05 A~0.5 A,而轉換效能可達到91.3%,線性調節度為5.83 mV/V,負載調節度為0.04048 mV/mA,而晶片面積為1.44 mm2。
摘要(英) Portable electronic devices are toward to the multi-function intelligent cell phone. Since all functions are integrated in one system, the power management is very important. Currently, the high efficiency power device design has been developed very well. According to most of the time, the electronic device is placed in the pockets; the safety issues are more and more critical. As a result, the power management device with high reliability has become an important research topic.
In case of protection when abnormal conditions, the current mode buck converter was implemented by current protection and over load frequency divider. In the thesis, high accuracy L sensing circuit is proposed to get the variation inductor current then adjust the duty cycle of power fet to control the max power points, compare to traditional converters, this thesis provides higher reliability and lower power consumptions.
A high accuracy current sensing protection and over load frequency divider have implemented with TSMC 0.18 um 3.3 V 2P4M CMOS process. Measurement results show that the buck converter can be operated at 1 MHz with supply voltage from 2.5 V to 4.5 V. The output voltage step up at 1 V with 10 uH inductor and 10 uF capacitor. The maximum conversion power efficiency for load current from 50 mA to 500 mA is up to 91.3%. The load regulation and line regulation are 0.04048 mV/mA and 5.83 mV/V, respectively. The chip area is 1.44 mm2.
關鍵字(中) ★ 切換式穩壓器
★ 電流模式控制
★ 電壓模式控制
★ 過電流保護
★ 過載除頻器
關鍵字(英) ★ Switching regulator
★ Current mode Control
★ Voltage mode Control
★ Current limit protection
★ Frequency divider
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 5
第二章 直流轉直流穩壓器概論 6
2.1 穩壓器種類 6
2.2 低壓降線性穩壓器 (LDO) 7
2.3 切換式穩壓器介紹 (Switching Regulator) 8
2.4 切換式電容穩壓器簡介 (Switching Capacitance) 9
2.5 切換器穩壓器分類 10
2.5.1 降壓式穩壓器 10
2.5.2 升壓式與升壓式穩壓器 12
2.6 控制電路操作介紹 15
2.6.1 電壓模式控制( Voltage Mode Control) 16
2.6.2 電流模式控制 (Current Mode Control) 18
2.6.3 輸出漣波電壓控制( Hysteretic Control) 21
2.7 切換式穩壓器規格定義說明 23
2.7.1 轉換效能(Efficiency)_ 23
2.7.2 線性調節度(Line Regulation)) 25
2.7.3 負載調節度(Load Regulation) 25
2.7.4 暫態響應(Transient Response) 25
第三章 動態電壓調整降壓溫壓器架構 28
3.1 系統架構 28
3.2 小訊號分析 29
3.2.1 電壓模式模型分析 29
3.3.2 電流模式模型分析 39
3.2.3 輸出漣波電壓控制模式分析 43
第四章 降壓溫壓器設計與模擬 47
4.1 帶差參考電路(Bandgap Reference) 47
4.1.1 帶差參考電路設計 48
4.2 具補償器之誤差放大器 50
4.3 脈衝寬度調變控制電路 (PWM Control Circuit) 52
4.3.1 遲帶比較器電路(Hysteresis Comparator Circuit) 52
4.3.2 鋸齒波振盪器電路(Saw tooth Oscillator Circuit) 53
4.3.3 緩起動電路(Soft-Start Circuit) 55
4.4 電流偵測電路 (Current Sensing Circuit) 57
4.4.1 偵測電感電流電路(L-sensing) 57
4.4.2 電壓轉電流轉換器 (V-I Converter) 59
4.5 除頻器控制電路 62
4.6 限制最高電流控制電路 63
第五章 模擬結果 65
5.1 帶差參考電路模擬 65
5.2 降壓穩壓器模擬結果 66
5.2.1 暫態模擬結果 67
5.2.2 效率模擬結果 68
5.2.3 線性負載度模擬結果 69
5.3 過負載模擬結果 71
5.3.1 除頻線路之過載功率比較 71
5.3.2 過載功率比較結果 74
第六章 結論 80
參考文獻 81




參考文獻 [1] Texas Instruments, “Power Management Guide,” Application, Oct. 2008.
[2] G.-A. Rincon-Mora and P. E. Allen, “A low-voltage, low quiescent current, Low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36–44, Jan. 1998.
[3] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converter, Applications, and Design, Second Ed., New York: Wiley & Sons, 1995.
[4] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Ed., Kluwer Academic Publishers, 2001.
[5] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. on Power Electronics, vol. 6, no. 2, pp. 271–280, Apr. 1991.
[6] Dr. Ray Ridly “Current Mode or Voltage Mode?, ” Switching Power Magazine, October 2000
[7] S. Qu, “Modeling and design consideration of V2 controlled buck converter,” in Proc. IEEE Appl. Power Electronic, Exp., Mar. 2001, pp. 507–513.
[8] Y. Wu and P.K.T Mok, “Comparative studies of common control scheme for reference tracking and application of end-point prediction,” in Proc. IEEE Custom Integrated Circuits, Sep. 2007, pp. 559–562.
[9] Y.-Y. Mai and P.K.T Mok, “A constant frequency output-ripple-voltage- based buck converter without using large ESR capacitor” in IEEE Trans. on Circuits and Systems II, vol. 55, no. 8, pp. 748–752, Aug. 2008.
[10] P. Y. Wu and P.K.T Mok, “A Monolithic buck converter with near-optimum reference tracking response using adaptive-output-feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2441–2450, Nov. 2007.
[11] H.-H. Ko, “A High Efficiency Synchronous CMOS Switching Buck Regulator with Accurate Current Sensing Technique,“ NCU MS. Thesis, 2007.
[12] Ridley, R. B., “A New Continuous-Time Model for Current-Mode Control with Constant On-Time, Constant Off-Time, and Discontinuous Conduction Mode,” IEEE Power Electronics Specialists Conference Record, San Antonio, Texas, June 1990, pp. 382-389
[13] F. Su, W.-H. Ki, and C.-Y. Tsui, “Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications,” IEEE J. Solid-State Circuits, vol. 43 no. 4, pp. 815–822, Apr. 2008.
[14] K.-N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/ C CMOS bandgap voltage reference without requiring low threshold voltage device,’’ IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526–530, Apr. 2002.
[15] B. Razavi, Design of Analog CMOS Integrated Circuits., New York: McGraw-Hill, 2001.
[16] D.-J. Allstot, “A precision variable-supply CMOS comparator,” IEEE J. Solid-State Circuits, vol. SC-17, no. 12, pp. 1080–1087, Dec.1982.
[17] S.-Y. Wang, “ Improved Light- Load Frequency for Switched Mode Buck Converter Using PWM Operated Power-Save Mode,” NTHU MS. Thesis, 2004.
[18] H.P. Forghani-zadeh and Rincon-Mora G.A., “Current-sensing techniques for DC-DC converters,” in Proc. Midwest Symp. on Circuits and Systems, vol. 2, Aug. 2002, pp. II-577– II-580.
[19] C.-F. Lee and P.K.T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[20] C.-Y. Leung, P.K.T. Mok, and K.-N. Leung, “An integrated CMOS current-sensing circuit for low-voltage current-mode buck regulator,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 52, no. 7, pp. 394–397, 2005
[21] M. Du and H. Lee, “A 2.5 MHz, 97%-accuracy on-chip current sensor with dynamically-biased shunt feedback for current-mode switching DC-DC converters,” in Proc. IEEE Int. Symp. on Circuits and Systems, May. 2008, pp. 3274–3277.
[22] K.-H. Cheng, C.-W. Su, and H.-H. Ko, “Highly accurate and efficient current-mode PWM CMOS DC-DC buck converter with on-chip current-sensing,” IEICE Trans. on Electronics , pp. 1941–1950, Dec. 2008.
[23] Forghani-zadeh, H. P. and Rincon-Mora, G.A. “An Accurate, Continuous. And Lossless Self-Learning CMS Current-Sensing Scheme for Inductor Based DC-DC Converters “IEEE JSS. Vol.42,pp 665-679, March 2007
[24] Yanming Li, Xiangyu Mao, Hongyi Wang, Changbao Wen, and Limin Wen, “An Improved Hiccup Mode Short-Circuit Protection Technique With Effective Overshoot Suppression for DC-DC Converters,” IEEE Int. pp. 877-885, Feb. 2013
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明