博碩士論文 102522015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.220.242.160
姓名 孔維顥(Wei-hao Kung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 受雨滴影響之監控影片車流估測
(Traffic Flow Estimation in Rain-Drop tampered Surveillance Videos)
相關論文
★ 影片指定對象臉部置換系統★ 以單一攝影機實現單指虛擬鍵盤之功能
★ 基於視覺的手寫軌跡注音符號組合辨識系統★ 利用動態貝氏網路在空照影像中進行車輛偵測
★ 以視訊為基礎之手寫簽名認證★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測
★ 影像中賦予信任等級的群眾切割★ 航空監控影像之區域切割與分類
★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計★ 影像特徵點匹配應用於景點影像檢索
★ 自動感興趣區域切割及遠距交通影像中的軌跡分析★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測
★ Analysis of the Performance of Different Classifiers for Cloud Detection Application★ 全天空影像之雲追蹤與太陽遮蔽預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們提出了一個更為靈活的車流估測方法,然而利用國道影像資料分析路段車流,已有許多人付諸實行,無論是在白天或是夜間,都有許多技術的支持,即使是在天氣狀況不佳,視野不明的情況下,如:雨霧干擾。也有許多學者致力於去除雜訊,還原影像內容。而在這麼多的先進論文之後,我們將這篇論文的主要目標訂在找出一個解決方案,其即使攝影鏡頭受到雨水的嚴重影響也能夠穩定的分析出其中含有的車流,並且能有著高度靈活度的分析系統,其能夠盡量減少人力干預,增加應對場景變化的能力。
在本篇論文中,我們有以下幾個主要貢獻:自動車道方向偵測、較靈活的特徵之擷取使用、具有穩健預測表現的自適應性分群法以及穩定系統預測表現的雜訊濾除步驟。其中在自動車道方向偵測的部分,我們利用特徵點匹配以及方向量化的方式來估計主要的車流方向,用以達到自動偵測車道方向的結果。而在特徵擷取的部分,我們使用的是前景之邊緣資訊所投影統計出之直方圖。為了搭配這樣的特徵並且使系統更加靈活,我們採用了自適應性高的分群演算法來預測出每張影像中所含有的車輛數,而不考慮需要訓練模組的方法,此演算法自適性高的原因來自於其中的參數設定,我們參數的決定方法是根據車道線數、感興趣區域以及車道角度的資訊來動態決定的。而使用前述的幾個重要貢獻,可以使我們對於多變的監控影像有更好的應對能力,這正是我們系統的主要目標,也是我們選擇不使用需要提前訓練模組的方法的原因。
而在雜訊濾除的部分,我們去除了一些不連續的值,經過這個步驟可以使我們系統的表現更加穩定。最後,我們使用一個機率式的有限狀態轉換機的圖形比對方法,他可以將連續單張影像中預測出之車輛數混合比對計算出此段時間之總車輛數。此方法之比對模型是利用車輛序列之長度以及車輛序列的轉換狀態相似程度,兩種特徵訓練而成。在此篇論文中是利用平均絕對誤差來評斷車流量估測的錯誤程度,越低代表具有越好的預測表現。而我們利用這樣的評斷方式可以看出,我們所提出之系統可以有效率的分析受雨滴汙染之影片中所含有的車流量。
摘要(英) In this study, we propose a flexible traffic flow estimation system for intelligent highway surveillance applications to deal with rain-drop tampered conditions. Major contributions of the proposed approach are automatic lane direction detection, flexible feature extraction, robust estimation with adaptive clustering, and noise removal for steady estimation.

For automatic lane direction detection, we use feature point matching and direction quantization to estimate the main direction. For feature extraction, we use projected foreground moving edge information. When estimating vehicle count for each frame, we utilize adaptive clustering algorithm instead of modeling methods. The parameters for the clustering algorithm are adaptively determined according to the region of interest and the number of lanes. The advantages of using clustering instead of model training is to minimize the need for retraining estimation models for different surveillance scenes.

For noise removal, we eliminate some discontinuous values. This step can make our system more stable. Finally, a flexible graph-based mapping method is incorporated to map the per frame vehicle count to per minute traffic flow. The mapping models are trained based on the length of the vehicle count sequence and the state transition likelihoods. The accuracy of the traffic flow analysis is satisfying with a low mean absolute error. It demonstrates that the proposed system is effective to analyze traffic flow under rain-drop tampered highway surveillance cameras.
關鍵字(中) ★ 車流估測
★ 受雨滴影響鏡頭
關鍵字(英) ★ Traffic Flow Estimation
★ Raindrop-tampered camera
論文目次 目錄
摘要 V
ABSTRACT VI
致謝 VII
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 相關研究 5
1.3 系統流程 7
1.4 論文架構 10
第二章 雨滴破壞下監控影片之車流量估計 11
2.1 雨滴影像中之車輛數估計 12
2.1.1 選取車流的偵測區域 12
2.1.2 雨滴破壞影像之前景區域偵測 13
2.1.2.1 顯著區域偵測[Salient Region Detection] 13
2.1.2.2 高斯混合模型之前背景判斷 [Background Subtraction using Gaussian Mixture Model] 14
2.1.2.3 連續影像相減法[Temporal Differencing] 14
2.1.3 前景區域之特徵擷取 - 影像投影統計直方圖 14
2.1.4.1 估計雨滴破壞影像之車輛數 - 分群演算法 19
2.2 受雨滴汙染影片之車流量估計 21
2.2.1 雜訊濾除[Noise Removal] 22
2.2.2 車輛數序列對應車輛數模型 [Vehicle Number Sequence Mapping Model] 23
第三章 實驗結果與比較 28
3.1 實驗環境與實驗資料 28
3.2 前景抓取成果之比較 30
3.3 影像中車輛數之估計成果比較與分析 31
3.4 車流量分析之成果及比較 40
3.4.1 序列模型法於自身場景之車流量分析 41
3.4.2 序列模型法於單一場景訓練下 測試綜合場景之成果比較 51
第四章 結論與未來研究方向 56
參考文獻 58


參考文獻 [1] José M. Álvarez and Antonio M. ´Lopez, “Road Detection Based on Illuminant Invariance”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 1, 184 - 193, 2011
[2] Raghuraman Gopalan, Tsai Hong, Michael Shneier, and Rama Chellappa, “A Learning Approach Towards Detection and Tracking of Lane Markings”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 3, 1088 - 1098, 2012
[3] Jesmin F. Khan, Sharif M. A. Bhuiyan, and Reza R. Adhami, “Image Segmentation and Shape Analysis for Road-Sign Detection”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 1, 83 – 96, 2011
[4] Jack Greenhalgh and Majid Mirmehdi, “Real-Time Detection and Recognition of Road Traffic Signs”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 4, 1498 – 1506, 2012
[5] Ke Lu, Zhengming Ding, and Sam Ge, “Sparse-Representation-Based Graph Embedding for Traffic Sign Recognition”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 4, 1515 – 1524, 2012
[6] Andreas Møgelmose, Mohan Manubhai Trivedi, and Thomas B. Moeslund, “Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 4, 1484 – 1497, 2012
[7] Christos Nikolaos E. Anagnostopoulos, Ioannis E. Anagnostopoulos, Vassili Loumos, and Eleftherios Kayafas, “A License Plate-Recognition Algorithm for Intelligent Transportation System Applications”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 7, Issue: 3, 377 – 392, 2006
[8] Ying Wen, Yue Lu, Jingqi Yan, Zhenyu Zhou, Karen M. von Deneen, and Pengfei Shi, “An Algorithm for License Plate Recognition Applied to Intelligent Transportation System”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 3, 830 – 845, 2011
[9] Christos-Nikolaos E. Anagnostopoulos, Ioannis E. Anagnostopoulos, Ioannis D. Psoroulas, Vassili Loumos, and Eleftherios Kayafas, “License Plate Recognition From Still Images and Video Sequences: A Survey”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 9, Issue: 3, 377 – 391, 2008
[10] Qixiang Ye, Jixiang Liang, and Jianbin Jiao, “Pedestrian Detection in Video Images via Error Correcting Output Code Classification of Manifold Subclasses”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 1, 193 – 202, 2012
[11] Min Wang, Hong Qiao, and Bo Zhang, “A New Algorithm for Robust Pedestrian Tracking Based on Manifold Learning and Feature Selection”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 4, 1195 – 1208, 2011
[12] Junping Zhang, Ben Tan, Fei Sha, and Li He, “Predicting Pedestrian Counts in Crowded Scenes With Rich and High-Dimensional Features”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 4, 1037 – 1046, 2011
[13] Niluthpol Chowdhury Mithun, Nafi Ur Rashid, and S. M. Mahbubur Rahman, “Detection and Classification of Vehicles From Video Using Multiple Time-Spatial Images”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 3, 1215 – 1225, 2012
[14] Durgaprasad Gangodkar, Padam Kumar, and Ankush Mittal, “Robust Segmentation of Moving Vehicles Under Complex Outdoor Conditions”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 4, 1738 – 1752, 2012
[15] Minkyu Cheon, Wonju Lee, Changyong Yoon, and Mignon Park, “Vision-Based Vehicle Detection System With Consideration of the Detecting Location”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 3, 1243 – 1525, 2012
[16] C. Y. Liu and N. H. C. Yung, “Scale-Adaptive Spatial Appearance Feature Density Approximation for Object Tracking”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 1, 284 – 290, 2011
[17] Amirali Jazayeri, Hongyuan Cai, Jiang Yu Zheng, and Mihran Tuceryan, “Vehicle Detection and Tracking in Car Video Based on Motion Model”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 2, 583 – 595, 2011
[18] Hsu-Yung Cheng, and Shih-Han Hsu, “Intelligent Highway Traffic Surveillance With Self-Diagnosis Abilities”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 12, Issue: 4, 1462 – 1472, 2011
[19] Andrew H. S. Lai, and Nelson H. C. Yung, “Lane Detection by Orientation and Length Discrimination”, in IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Volume: 30, Issue: 4, 539 – 548, 2000
[20] JOHN CANNY, “A Computational Approach to Edge Detection”, in IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, Volume: PAMI-8, Issue: 6, 679 – 698, 1986
[21] Ming-Ming Cheng, Guo-Xin Zhang, Mitra, N.J., Xiaolei Huang and Shi-Min Hu, “Global Contrast based Salient Region Detection”, IEEE Conference on Computer Vision and Pattern Recognition, 409-416, 2011
[21] Ye Li, Bo Li, Bin Tian, and Qingming Yao, “Vehicle Detection Based on the AND–OR Graph for Congested Traffic Conditions”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 14, Issue: 2, 984 – 993, 2013
[22] Luis Unzueta, Marcos Nieto, Andoni Cortés, Javier Barandiaran, Oihana Otaegui, and Pedro Sánchez, “Adaptive Multicue Background Subtraction for Robust Vehicle Counting and Classification”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 2, 527 – 540, 2012
[23] Yen-Lin Chen, Bing-Fei Wu, Hao-Yu Huang, and Chung-Jui Fan, “A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance”, in IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Volume: 58, Issue: 5, 2030 – 2044, 2011
[24] Wei Zhang, Q. M. J. Wu, Guanghui Wang, and Xinge You, “Tracking and Pairing Vehicle Headlight in Night Scenes”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 1, 140 – 153, 2012
[25] Ching-Po Lin, Jen-.Chao Tai and.Kai-Tai Song, “Traffic Monitoring Based on Real-Time Image Tracking”, in IEEE International Conference on Robotics and Automation, Volume: 2, 2091 - 2096, 2003.
[26] Hsu-Yung Cheng, Chih-Chang Yu, "Nighttime Traffic Flow Analysis for Rain-drop Tampered Cameras" 22nd International Conference on Pattern Recognition (ICPR 2014) , 714 – 719, Aug. 2014.
[27] Thou-Ho Chen; Jun-liang Chen ; Chin-Hsing Chen ; Chao-ming Chang “Vehicle Detection and Counting by Using Headlight Information in the Dark Environment”, Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Volume: 2, 519 – 522, 2007.
[28] Bing-Fei Wu ; Chih-Chung Kao ; Jhy-Hong Juang ; Yi-Shiun Huang, “A New Approach to Video-Based Traffic Surveillance Using Fuzzy Hybrid Information Inference Mechanism”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 14, Issue: 1, 485 – 491, 2013
[29] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, Wen-Fong Hu, “Automatic Traffic Surveillance System for Vehicle Tracking and Classification”, in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 7, Issue: 2, 175 – 187, 2006
[30] Kit Yan Chan, Tharam S. Dillon, Jaipal Singh, Elizabeth Chang, “Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg–Marquardt Algorithm”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 13, Issue: 2, 644 – 654, 2012
[31] Jun Yang, Yang Wang, Getian Ye, Arcot Sowmya, Bang Zhang, Jie Xu, “FEATURE CLUSTERING FOR VEHICLE DETECTION AND TRACKING IN ROAD TRAFFIC SURVEILLANCE”, 16th IEEE International Conference on Image Processing (ICIP), 1141-1144, 2009
[32] Zoran Zivkovic, “Improved Adaptive Gaussian Mixture Model for Background Subtraction”, Proceedings of the 17th International Conference on Pattern Recognition, Volume: 2, 28 – 31, 2004
[33] Herbert Bay, Tinne Tuytelaars, Luc Van Gool, “SURF: Speeded Up Robust Features”, 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I, 404-417, May 7-13, 2006.
[34] Chih-Chang Yu, Hsu-Yung Cheng, Member, IEEE, and Yi-Fan Jian, “Raindrop-Tampered Scene Detection and Traffic Flow Estimation for Nighttime Traffic Surveillance”, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Volume: 16, Issue: 3, 1518 – 1527, JUNE 2015
指導教授 鄭旭詠(Hsu-yung Cheng) 審核日期 2015-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明